23.09.2019

Orientierende Bausubstanz- und zusätzliche Untergrundunter- suchungen auf dem Grundstück Hindenburgstr. 75 in Balingen

Orientierende Bausubstanz- und zusätzliche Untergrunduntersuchungen, Hindenburgstr. 75, Balingen

Aufgestellt: Tübingen, 23.09.2019

Christian Eichelmann | Leiter Umweltengineering

Bernhard Hauser | Projektleiter

Thomas Schatz | Projektleiter

Auftraggeber:

i.V.

Stadt Balingen Amt für Stadtplanung und Bauservice Neue Strasse 31 72336 Balingen

Verteiler:

Stadt Balingen, 2-fach

Berghof Analytik + Umweltengineering GmbH
Ob dem Himmelreich 9
72074 Tübingen
Deutschland
T +49.7071.7898-0
F +49.7071.9878-88
E-Mail: umweltegineering@berghof.com
www.berghof.com

Inhaltsverzeichnis

1.	Ausgangssituation und Grundinformation	5
2.	Vergleichswerte	5
3.	Durchgeführte Untersuchungen	8
3.1.	Südwestliches Gebäude	8
3.2.	Westliches Werkstattgebäude	10
3.3.	Östliches Werkstattgebäude	11
3.4.	Tanklager (Hindenburgstrasse)	
3.5.	Unterstand (im südöstlichen Bereich des Geländes)	13
3.6.	Freifläche	
4.	Untersuchungsergebnisse und Bewertung	14
4.1.	Mineralische Bausubstanz: Betonböden und Wände	
4.1.1.	Einstufung der Wände Wohnhaus 75 nach RC-Erlass und DepV	
4.1.2.	Einstufung der Wände der Werkstattgebäude nach RC-Erlass	
4.1.3.	Einstufung der Betonböden der Werkstattgebäude nach RC-Erlass	
4.1.4.	Einstufung der Betonböden der Werkstattgebäude und des Tanklagers für MKW nach RC- Erlass bzw. DepV	
4.1.5.	Untersuchungen von Bauteilen auf PAK und Einstufung nach dem RC-Erlass	
4.1.6.	Untersuchung der Asphaltflächen auf PAK	
4.1.0.	Bauteile mit Verdacht auf Asbest	
4.2.	Sonstige schadstoffhaltige Bauteile: KMF und Styropor	
4.4.	Zusammenfassung Wände und Böden	
5.	Kostenschätzungen	22
5.1.	Kosten für den Gebäuderückbau und die Entsorgung der Bausubstanz bis zum Z 1.1-Wert	
5.2.	Kosten für den separaten Ausbau und die Entsorgung der Bausubstanz > Z 1.1, der	
	Asphaltflächen und der Asbestbauteile	23
5.2.1.	Mineralische Bausubstanz (Betonböden und Wände)	
5.2.2.	Asphaltflächen	
5.2.3.	Asbesthaltige Bauteile	
5.3.	Kostenübersicht Bausubstanz	
6.	Untergrunduntersuchungen	26
6.1.	Aufgabenstellung	
6.2.	Durchführung und Umfang der Arbeiten	
6.3.	Untergrundverhältnisse	
6.4.	Auffüllbereiche	
6.4.1.	Anlaysen der Auffüllungen	
6.4.2.	Kosten für die Entsorgung der Auffüllungen	
6.5.	Kostenschätzung für die Beseitigung von fünf festgestellten Belastungsbereichen	
6.5.1.	Kalkulationsgrundlagen	
6.5.2.	Kostenzusammmenstellung	
7.	Verzeichnisse	34
7.1.	Tabellenverzeichnis	34
7.2.	Abkürzungsverzeichnis	35

Anlagenverzeichnis

Nr.	Beschreibung
1	<u>Lagepläne</u>
	Lageplan 1: Nutzungen und Untersuchungspunkte
	Lageplan 2: Beprobungspunkte der Betonböden und Wände
	Lageplan 3: Klassifizierung der Betonböden nach RC-Erlass und MKW-Gehalt
	Lageplan 4: Klassifizierung der Asphaltflächen nach PAK-Gehalt
	Lageplan 5: Klassifizierung der Dachabdeckungen
	Lageplan 6: Klassifizierung der Auffüllbereiche
	Lageplan 7: Schadensbereiche
2	Fotodokumentation
3	Sondierprofile
4	Analysenbefunde

1. Ausgangssituation und Grundinformation

Das Gelände der Hindenburgstraße 75 in Balingen soll im Rahmen der geplanten Gartenschau neu genutzt werden.

Die Berghof Analytik + Umweltengineering GmbH Tübingen erhielt mit Schreiben vom 22.03.2019 von der Stadt Balingen den Auftrag zur Durchführung von orientierenden Bausubstanzerkundungen für die nachfolgend gelisteten Gebäude bzw. für die Untersuchung von Freiflächen, die sich innerhalb des Areals befinden (s. Lageplan 1, Anlage 1).

- → Südwestliches Gebäude, bestehend aus (von Süden nach Norden) Wohnhaus, Büro und ehemaliger Lagerschuppen, Garage
- → Westliches Werkstattgebäude, bestehend aus (von Süden nach Norden) Werkstatt/ Lager, Garage, Betriebsgebäude (Firma Schwenk)
- → Östliches Werkstattgebäude, bestehend aus einem Längsbau in Nord-Süd-Richtung und einem nördlich anschließenden Querbau, genutzt als Werkstätten
- → Gebäude Tanklager (an Hindenburgstr. angrenzend), mit südlich anschließenden oberirdischen Tanks
- → Unterstand im südöstlichen Bereich des Geländes
- → Freiflächen (versiegelte Bereiche sowie Grünland im Westen)

2. Vergleichswerte

Für die <u>Verwertung von Bauschutt</u> gelten in Baden-Württemberg die Z 1.1-, Z1.2- und Z 2-Werte der Vorläufigen Hinweise zum Einsatz von Baustoffrecyclingmaterial¹, umgangssprachlich und im Weiteren als "Recycling-Erlass" bezeichnet. Die dort genannten Zuordnungswerte sind wie folgt definiert:

Z 1-Wert: Eingeschränkter offener Einbau

Die Zuordnungswerte Z 1 stellen die Obergrenze für den offenen Einbau unter Berücksichtigung bestimmter Nutzungseinschränkungen dar. Maßgebend für die Festlegung der Werte ist in der Regel das Schutzgut Grundwasser.

Grundsätzlich gelten die Z1.1-Werte. Bei Einhaltung dieser Werte ist selbst unter ungünstigsten hydrogeologischen Voraussetzungen davon auszugehen, dass keine nachteiligen Veränderungen des Grundwassers auftreten.

Bei hydrogeologisch günstigen Standorten gelten die Z 1.2-Werte.

Z 2-Wert: Eingeschränkter Einbau mit definierten technischen Sicherungsmaßnahmen Die Zuordnungswerte Z2 stellen die Obergrenze für den Einbau mit definierten technischen Sicherungsmaßnahmen dar. Dadurch soll der Transport von Inhaltstoffen in den Untergrund und das Grundwasser verhindert werden. Maßgebend für die Festlegung der Werte ist das Schutzgut Grundwasser.

Ministerium für Umwelt und Verkehr Baden-Württemberg: Vorläufige Hinweise zum Einsatz von Baustoffrecyclingmaterial, Erlass vom 13.04.2004

Für die <u>Ablagerung auf Deponien</u> gelten bundesweit die Zuordnungswerte der Deponieverordnung² (i.w. Eluatwerte für anorganische Parameter), für die Deponieklassen 0 bis III, (im Weiteren als DepV bezeichnet). In Baden-Württemberg gelten zusätzlich die Orientierungswerte für die Deponieklassen 0 bis III (i.w. Feststoffgehalte für organische Parameter) aus der Handlungshilfe für Entscheidungen über die Ablagerbarkeit³.

Die Beurteilung von <u>PAK-haltigen Bauteilen</u> (z.B. Asphalt oder Dachpappe) erfolgt, zusätzlich zur Einstufung nach dem Recycling-Erlass Baden-Württemberg, nach den vorläufigen Vollzugshinweisen zu Abfallarten aus Spiegeleinträgen⁴, wonach Materialien ab einem PAK-Gehalt von 200 mg/kg als teerhaltig bzw. als gefährlicher Abfall eingestuft werden.

Dieser Grenzwert entspricht auch dem Leitfaden zum Umgang mit und zur Entsorgung von teerhaltigem Straßenaufbruch⁵ zur Einstufung von Asphalt.

Von Seiten der Straßenbauverwaltungen wird für Fernstraßen ein Straßenaufbruch ab einem PAK-Gehalt von 25 mg/kg als belastet eingestuft, bei dessen Überschreitung Beschränkungen für die Wiederverwendung gelten.

Für die Entsorgung gefährlicher Abfälle gelten besondere Nachweis- und Überwachungspflichten, die mit den zuständigen Behöden (Abfallwirtschaftsamt) abzustimmen sind, gemäss KrWG (Kreisabfallwirtschaftsgesetz).

Bezüglich erforderlicher Arbeitsschutzmaßnahmen sind bei einer Benz(a)pyren-Konzentration von mehr als 50 mg/kg die Vorgaben der TRGS 551⁶ zu beachten.

<u>Asbest:</u> ist ein natürliches vorkommendes Mineral, das aufgrund seiner besonderen technischen Eigenschaften in über 3.500 Produkten angewendet wurde. Am häufigsten wurden sogenannte Asbestzementprodukte verwendet, bei denen das Asbest fest gebunden vorliegt und höchstens eine geringe Faserfreisetzung zu befürchten ist.

Demgegenüber ist bei Produkten mit schwach gebundenem Asbest eine Faserfreisetzung eher wahrscheinlich. Schwach gebundenes Asbest findet sich beispielsweise in leichten Bauplatten, als Fußbodenkleber oder als Spritzasbest.

Asbest ist nachgewiesenermaßen als krebserzeugend (Kategorie 1 nach EU-Richtlinie) eingestuft. Die Verwendung von schwach gebundenem Asbest in Produkten ist in Deutschland (BRD) seit 1979, von Asbestzement seit Beginn der 90er Jahre verboten.

Die Verwendung von Asbest in Baustoffen ist u.a. durch die Gefahrstoffverordnung untersagt. Für den Umgang mit Asbest bei Abbruch-, Sanierungs- und Instandhaltungsarbeiten gelten die Technischen Regeln für Gefahrstoffe TRGS 519⁷.

Abfallrechtlich sind Bauteile mit mehr als 0,1 Massen-% Asbest als gefährlicher Abfall einzustufen.

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Verordnung über Deponien und Langzeitlager (Deponieverordnung) – DepV) vom 27.04.2009, zuletzt geändert am 15.04.2013

Ministerium für Umwelt und Verkehr Baden-Württemberg, Handlungshilfe für Entscheidungen über die Ablagerbarkeit PAK-, MKW-, BTXE-, LHKW-, PCB-, PCDD/F- und Herbizid-haltiger Abfälle, Stand 30.Mai 2012

Ministerium für Umwelt, Naturschutz und Verkehr Baden-Württemberg, Zuordnung von Abfällen zu Abfallarten aus Spiegeleinträgen, Vorläufige Vollzugshinweise, Februar 2006

Ministerium für Umwelt Baden-Württemberg, Leitfaden zum Umgang mit und zur Entsorgung von teerhaltigem Straßenaufbruch, Mai 2018

⁶ Bundesministerium für Arbeit und Sozialordnung, TRGS 551 Technische Regeln für Gefahrstoffe, Teer und andere Pyrolyseprodukte aus organischem Material. Ausgabe August 2015

Bundesministerium für Arbeit und Sozialordnung, TRGS 519 Technische Regeln für Gefahrstoffe, Asbest, Abbruch-, Sanierungs- oder Instandhaltungsarbeiten, Fassung vom Januar 2007

<u>Künstliche Mineralfasern (KMF)</u> werden als kritisch eingestuft, wenn sie folgende Eigenschaften aufweisen (sogenannte WHO-Fasern):

- Länge > 5 µm
- Durchmesser < 3 µm
- Länge / Durchmesser > 3.

Diese Fasern sind lungengängig und können Krebs erzeugen.

Seit etwa 1996 gibt es gesundheitlich unbedenkliche KMF, für welche seit 1999 ein RAL-Gütezeichen existiert. KMF ohne Gütezeichen werden als "alte" Mineralwolle, mit Gütezeichen als "neue" Mineralwolle bezeichnet. "Alte" Mineralwolle gab es bis mindestens 2000, teilweise wurden auch 2002 noch "alte" Mineralwollen verwendet. KMF unbekannter Herkunft und Einbauzeit vor 2002 ist daher als krebserzeugend einzustufen.

Die Zuordnung in Bestandsgebäuden erfolgt i.d.R. durch den Gutachter aufgrund des Alters und der Bauart des Gebäudes ohne Messungen. Bei Bedarf kann die Zuordnung mit Hilfe des Kanzerogenitätsindexes (KI-Index) erfolgen. Dabei werden KMF wie folgt eingestuft:

KI > 40: nicht krebserzeugend

KI 30 bis 40: möglicherweise krebserzeugend (Kategorie 3, nach EU-Verordnung)

KI < 30: krebserzeugend (Kategorie 2, nach EU-Verordnung).

Für den Umgang mit alter Mineralwolle bei Abbruch-, Sanierungs- und Instandhaltungsarbeiten gelten die Technischen Regeln für Gefahrstoffe TRGS 5218.

<u>Styropor</u> ist ein Markenname für expandiertes Polystyrol (EPS). Es kann das schadstoffhaltige Flamm-schutzmittel Hexabromcyclododekan (HBCD oder HBCDD) enthalten. Der HBCD-Gehalt im Styropor (älter als etwa 2008) beträgt i.d.R. ca. 0,7 Gewichts-%.

Für HBCD-haltige Materialien > 1.000 mg/kg gelten gemäß POP-Abfall-Überwachungsverordnung⁹ seit August 2017 besondere Vorschriften zur Überwachung und zum Nachweis der Entsorgung. Laut Umweltministerium Baden-Württemberg kann für Styropor, das älter ist als 2008, generell angenommen werden, dass der Grenzwert für HBCD überschritten ist.

Styropor mit HBCD-Gehalten > 1.000 mg/kg ist separat auszubauen und unter Einhaltung der vorgeschriebenen Nachweise zu entsorgen.

Die Entsorgung von <u>Holzbauteilen</u> erfolgt gemäß der Altholzverordnung. Beispielsweise wird Konstruktionsholz aus Dachstühlen allein aufgrund seiner Funktion als A IV-Holz eingestuft. Generell ist es möglich, durch eine analytische Untersuchung von Holzbauteilen die Einstufung zu überprüfen bzw. zu korrigieren.

Bundesministerium für Wirtschaft und Arbeit, Technische Regeln für Gefahrstoffe, TRGS 521 Abbruch-, Sanierungs- und Instandhaltungsarbeiten mit alter Mineralwolle, Stand: Februar 2008

Bundesregierung, Verordnung über die Getrenntsammlung und Überwachung von nicht gefährlichen Abfällen mit persistenten organischen Schadstoffen - POP-Abfall-Überwachungsverordnung – POP-Abfall-ÜberwV, Stand: 17.07.2017

3. Durchgeführte Untersuchungen

Die Beprobung der Bausubstanz wurde im April 2019 durchgeführt. Die Untersuchungspunkte sind im Lageplan 2 der Anlage 1 dokumentiert.

HINWEISE:

Die durchgeführten Untersuchungen ergeben einen Überblick über schadstoffhaltige Bausubstanz in den vom Abbruch betroffenen Gebäuden, soweit sie zum jetzigen Zeitpunkt bekannt sind.

Zu nicht zugänglichen Bauteilen z.B. technischen Einrichtungen, Fundamenten und Abwasserleitungen können keine Aussagen gemacht werden.

Es ist nicht auszuschließen, dass während oder nach dem Gebäuderückbau weitere schadstoffhaltige Bauteile angetroffen werden. Diese sind dann ggf. ebenfalls zu untersuchen.

Die Probenahme, insbesondere für die mineralische Bausubstanz (Beton und Mauerwerk), kann im Erkundungsstadium nicht gemäß LAGA PN 98 durchgeführt werden. Daher können die Untersuchungsergebnisse nicht als Deklarationsanalytik für die Bausubstanz verwendet werden.

Wir empfehlen den selektiven Rückbau unter fachgutachterlicher Begleitung vorzusehen, damit die festgestellten kritischen Baustoffe fachgerecht separiert, deklariert und überwacht entsorgt bzw. verwertet werden. Eine Fachbauleitung führt in der Regel zu einer Minderung der Rückbaukosten und wird behördlicherseits oft ohnehin gefordert.

3.1. Südwestliches Gebäude

Das Gebäude besteht aus (von Süden nach Norden)

- Wohnhaus
- Büro und ehemaliger Lagerschuppen
- Garagen.

Das unterkellerte <u>Wohnhaus</u> besitzt 2 Stockwerke (Erdgeschoss und Obergeschoss) und ein Satteldach (Dachgeschoss mit Holzdachstuhl und Ziegelabdeckung).

Der größte Teil des Erdgeschosses war zum Zeitpunkt der Untersuchungen bewohnt, der nordwestliche Teil mit einem Anbau aus Glas wurde als Büro von der Deutschen Bahn genutzt. Das Ober- und das Dachgeschoss standen leer.

Ober- und Dachgeschoss waren zum Zeitpunkt der Bausubstanzerkundung frei begehbar.

Die <u>Böden</u> im Obergeschoss weisen in den Zimmern und in der Küche Laminat, im Flur und den Sanitärräumen Fliesen (z.T. auch über die Wände) auf. Lediglich im nordwestlichen Raum liegt ein Teppichboden.

In den beiden nördlichen Räumen (ca. 28 m²) liegen unter Teppichboden bzw. Laminat Bodenbelagsplatten, für die ein Asbestverdacht besteht.

Tabelle 1: Bodenbelagsplatte im südwestlichen Gebäude

	Obergeschoss, nördliche Räume, Boden
Analytik	→ Bodenbelagsplatte, mit Kleber
Labor/-nr.	Kleber: Competenza NL68317.2
Parameter	Asbest

Unter dem Teppichboden wurde in einem Raum ein schwarzer Estrich angetroffen, der auf PAK untersucht wurde.

Tabelle 2: PAK im Estrich im Obergeschoss des Wohnhauses 75

Obergeschoss, verschiedene Räuß Boden	
Analytik	→ schwarzer Estrich
Labor/-nr.	Berghof 102266/930/01
Parameter	PAK

Das Dachgeschoss ist teilweise ausgebaut.

Die Böden im nicht ausgebauten Teil des Dachgeschosses sind als Holzböden ausgebildet. Der Hohlraum zur darunterliegenden Decke ist mit offen verlegter Glaswolle (KMF) verfüllt (ca. 8 cm). Im ausgebauten Teil des Dachgeschosses befinden sich Spanplatten unter dem Teppichboden. Es ist davon auszugehen, dass der Hohlraum zur darunterliegenden Decke, analog zum nicht ausgebauten Bauteil, mit offen verlegter Glaswolle (KMF) verfüllt ist.

Im Dachspitz (über dem Dachgeschoss) ist auf dem Boden ganzflächig Glaswolle (KMF) offen verlegt.

Die <u>Decke</u> des Untergeschosses besteht aus Beton und ist teilweise als Kappendecke ausgebildet.

Die Decke des Obergeschosses ist als Holzdecke ausgebildet. Zum Teil sind Deckenverkleidungen aus Styropor oder Holz (mit möglicherweise darüber liegender Dämmung aus KMF oder Styropor) vorhanden.

Die Dachschrägen und Wände im Dachgeschoss sind mit Holz verkleidet. Im ausgebauten Teil befindet sich hinter den Dachschrägen (mit Spanplatten verkleidet) sowie (in großen Mengen) im Kniestock offen verlegte Glaswolle (KMF), im nicht ausgebauten Teil ist der Hohlraum (hinter Spanplatten) unverfüllt.

Die Dachschrägen im Dachspitz sind ungedämmt.

In den <u>Wänden</u> des Ober- und Dachgeschosses wurde teilweise Heraklith (Holzfaserplatten) verwendet.

Im <u>Untergeschoss</u> befindet sich eine Grube, die vermutlich früher als Kohlelager diente.

Die Heizleitungen sind mit Glaswolle (KMF) isoliert.

Die Flanschdichtungen zwischen den Wasserleitungen besitzen vermutlich Dichtungen aus Asbest.

Tabelle 3: Flanschdichtungen im Keller des Wohnhauses 75

Untergeschoss	10 707
Flanschdichtungen → Organoleptische Einstufung als asbesthaltig (schwach gebunden) ohne Analytik	

Aus der <u>mineralischen Bausubstanz des Wohnhauses</u> wurde eine Mischprobe erstellt und auf die Parameter des Recycling-Erlasses Baden-Württemberg untersucht (Labornr. 102265/930/01). Diese Mischprobe umfasst sowohl Wände und Böden des Untergeschosses als auch Wände des Obergeschosses.

Der nicht unterkellerte <u>Gebäudeteil Büro und Lagerschuppen</u> (Erd- und Dachgeschoss) besitzt ein Satteldach und wurde zum Zeitpunkt der Untersuchungen von der Deutschen Bahn genutzt.

Aufgrund der aktuellen Nutzung der Räume konnten in diesem Gebäudeteil keine Bauteile (Boden, Decken, Wände) geöffnet und beprobt werden.

Die zwei <u>Garagen</u>, mit einem Flachdach darüber, konnten zum Zeitpunkt der Untersuchungen nicht begangen werden.

Aus der Dachpappe des Flachdaches wurde eine Probe genommen und auf PAK untersucht.

Tabelle 4: Dachpappe auf Garagendach

	Garage	
	Flachdach → Dachpappe	
Labor/-nr.	Berghof 102266/930/02	
Parameter	PAK	

3.2. Westliches Werkstattgebäude

Das Gebäude besteht aus (von Süden nach Norden)

- Werkstatt/Lager
- Garage
- Betriebsgebäude (Firma Schwenk).

Bei dem Gebäude handelt es sich um einen nicht unterkellerten Massivbau aus Ziegelmauerwerk. Der Zugang zu den beiden südlichen Bereichen (Werkstatt/Lager, Garage) erfolgt über Stahltore.

Das Gebäude besitzt vier, in West-Ost-Richtung verlaufende Satteldächer. Nördlich schließt sich eine nach Norden offene Überdachung an. Alle Dächer/Überdachungen sind mit Asbestzementplatten abgedeckt. Die seitliche Dacheinfassung besteht ebenfalls aus Asbestzement.

Der nördliche Teil, Betriebsgebäude ist in mehrere Bereiche unterteilt und umfasst

- Lackierkabine mit Abluftgebläse und Schornstein aus Stahl
- Werkstattbereiche
- Sozialräume, Büro
- Heizraum

Der Betonboden wurde im Bereich der Werkstatt (Bezeichnung "Halle Schwenk", Labornr. 102267/930/03), der Lackierkabine und im Bereich Abluftgebläse (RKS 21 und RKS 22, Labornr. 102267/930/09 und 10) auf MKW untersucht. Aus der Probe RKS 21 wurde außerdem die Beschichtung des Betons auf Asbest untersucht (Competenza, NL68317.3 RKS 21).

Der Betonboden im <u>südlichen Bereich Werkstatt/Lager</u>, ist dunkel verfärbt. Hier befindet sich eine 5 m lange Montagegrube.

Der Betonboden der Werkstatt (in der Nähe des unterirdischen Altöltanks; RKS 12, Labor-Nr. 102267/06) und der Betonboden in der Montagegrube (RKS 13, Labornr. 102267/07) wurden auf MKW untersucht.

Der Bereich Werkstatt/Lager sowie die nördlich anschließende Garage (Firma Schwenk) besitzen eine abgehängte Decke aus Dämmplatten mit Künstlichen Mineralfasern (KMF).

Tabelle 5: Abgehängte Decke im westlichen Werkstattgebäude

	Werkstatt/Lager	
	abgehängte Decke → Dämmplatten	
Labor/-nr.	Competenza NL68317/01	
Parameter	Asbest/KMF	

Aus dem Betonboden des gesamten Gebäudes wurde eine Mischprobe (Labornr. 102268/930/01) auf die Parameter des Recycling-Erlass untersucht.

Aus den Ziegelwänden des gesamten Gebäudes wurde eine Mischprobe (Labornr. 102421/930/01) auf die Parameter des Recycling-Erlass untersucht.

3.3. Östliches Werkstattgebäude

Das Gebäude besteht aus einem Längsbau in Nord-Süd-Richtung, mit 8 Werkstätten, und einem nördlich anschließenden Querbau, mit Büro, Lager und Sozialräumen. Die nördlichste Werkstatt ist breiter und höher als die Anderen und mit dem Querbau verbunden.

Die südlichste und die nördlichste Werkstatt des Längsbaus besitzen jeweils eine Montagegrube.

Bei dem Gebäude handelt es sich um einen Massivbau aus Ziegelmauerwerk.

Der Zugang zu den Werkstätten erfolgt über große doppelflügelige Holztore. Lediglich die nördlichste Werkstatt besitzt Stahltore.

Das Gebäude besitzt ein Satteldach, das nördlich anschließende Quergebäude ein Pultdach. Nördlich an den Querbau schließt sich eine nach Norden offene Überdachung an. Diese besteht aus einer Holzkonstruktion und besitzt ein Pultdach mit Blechabdeckung.

Auf der Ostseite des Gebäudes befindet sich ein kleiner Anbau.

Alle Dächer/Anbauten (bis auf die Überdachung im Norden) sind mit Asbestzementplatten abgedeckt. Das Dach ist ungedämmt.

Über dem Erdgeschoss befindet sich eine Holzdecke. Die abgehängte Decke im Erdgeschoss besteht aus Dämmplatten mit KMF (gleiche Bauart wie im nordwestlichen Gebäude, Gebäudeteil Werkstatt/Lager).

Der Dachspitz ist in Teilbereichen provisorisch ausgebaut, das Dach hier mit KMF gedämmt.

Aus den Betonböden wurden folgende Proben auf MKW untersucht:

- Werkstatt Hergert (Labornr. 102267/930/01)
- RKS 11, RKS 14 und RKS 15 (Labornr. 102267/930/05, 08 und 04)
- Lager Öncan (Labornr. 102267/930/12).

Aus dem gesamten Betonboden des Gebäudes wurde eine Mischprobe (Labornr. 102268/930/02) auf die Parameter des Recycling-Erlasses Baden-Württemberg untersucht.

Aus den Wänden des gesamten Gebäudes wurde eine Mischprobe (Labornr. 102421/930/02) auf die Parameter des Recycling-Erlass untersucht.

3.4. Tanklager (Hindenburgstrasse)

Das Tanklager besteht aus

- Tankstellen- und Werkstattgebäude
- südlich anschließende oberirdische Tanks

Das Tankstellen- und Werkstattgebäude besitzt ein Unter- und ein Erdgeschoss.

Das Gebäude ist ein Massivbau aus Beton und Mauerwerk.

Westlich am Gebäude befinden sich 2 Zapfsäulen.

Das Gebäude besitzt ein nach Westen auskragendes Pultdach mit einer Abdeckung aus Blechtrapezprofilen. Das Dach ist ungedämmt. Nach unten ist es mit Spanplatten vom Erdgeschoss abgetrennt.

Aus dem Betonboden im Untergeschoss wurde eine Probe (Labornr. 102267/930/02) auf MKW untersucht.

Vor dem Gebäude, im früheren Tankstellenbereich, besitzt die Asphaltdecke schwarze Fugenmassen, die auf PAK beprobt wurden.

	Tankstellenbereich neben Gebäude	
	→ Asphaltfuge	
Labor/-nr.	Berghof 102266/930/03	
Parameter	PAK	

Südlich des Gebäudes befinden sich Regale aus Stahl und oberirdische Tanks. Der Boden im Bereich der Regale besteht teilweise aus Betonsteinen.

Aus dem Betonboden im Bereich der Tanks wurde eine Probe (RKS 23, Labornr. 102267/930/11) auf MKW untersucht.

3.5. Unterstand (im südöstlichen Bereich des Geländes)

Der Unterstand ist nach Westen offen und wird als Parkplatz benutzt. Er besitzt ein Pultdach, das mit Asbestzementplatten abgedeckt ist.

3.6. Freifläche

Aus folgenden Sondierungen wurde der Asphalt auf PAK untersucht:

- RKS 1 (Labornr. 102415/930/01)
- RKS 2 (Labornr. 102415/930/02)
- RKS 3 (Labornr. 102415/930/03)
- RKS 4 (Labornr. 102415/930/04)
- RKS 5 (Labornr. 102415/930/05)
- RKS 6 (Labornr. 102415/930/06)
- RKS 7 (Labornr. 102415/930/07)

4. Untersuchungsergebnisse und Bewertung

Die Einstufungen in Entsorgungsklassen sind vorläufige Einschätzungen aufgrund der vorliegenden Untersuchungen. Es ist nicht auszuschließen, dass im Zuge der späteren Haufwerksbeprobungen hiervon abweichende Einstufungen festgestellt werden.

4.1. Mineralische Bausubstanz: Betonböden und Wände

4.1.1. Einstufung der Wände Wohnhaus 75 nach RC-Erlass und DepV

Die Mischprobe "Wände Wohnhaus 75" umfasst neben Einzelproben aus Wänden auch Einzelproben aus dem Untergeschoss (Wände und Boden).

Nach den vorliegenden Untersuchungen muss die mineralische Bausubstanz des südwestlichen Gebäudes (Wände und Böden) aufgrund des erhöhten Sulfatgehalts als DK I-Material eingestuft werden (s. Tabelle 7).

Tabelle 7: Analysen der Wände von Wohnhaus Nr. 75

Parameter	Einheit	Wände Wohnhaus 75	Zuordnungswerte RC-Erlass		C-Erlass	
Prüfbericht-Nr.		102265/01	Z 1.1	Z 1.2	Z 2	
Probenahmetag		10.04.19	2 1.1	2 1.2		
MKW C10-C40	mg/kg TS	< 50	600	600	2000	
MKW C10-C22	mg/kg TS	< 50	300	300	1000	
EOX	mg/kg TS	< 1	3	5	10	
PAK 16	mg/kg TS	nb	10	15	35	
PCB 6	mg/kg TS	nb	0,15	0,5	1	
pH-Wert	-	11,0	6,5-12,5	6,5-12,5	5,5-12,5	
Leitfähigkeit	μS/cm	2080	2500	3000	5000	
Chlorid	mg/l	10,7	100	200	300	
Sulfat	mg/l	1180	250	400	600	
Arsen	μg/l	< 2,0	15	30	60	
Blei	μg/l	< 2,0	40	100	200	
Cadmium	μg/l	< 1,0	2	5	6	
Chrom	μg/l	32	30	75	100	
Kupfer	μg/l	6,8	50	150	200	
Nickel	μg/l	< 2,0	50	100	100	
Quecksilber	μg/l	< 0,2	0,5	1	2	
Zink	μg/l	< 10	150	300	400	
Phenolindex *	μg/l	< 10	20	50	100	

DepV und Zuordnungswerte Handlungshilfe or- gan. Schadstoffe							
DK 0 DK I							
500	4000						
-	-						
-	-						
30	500						
1	5						
5,5-13	5,5-13						
-	-						
80	1500						
100	2000						
50	200						
50	200						
4	50						
-	-						
200	1000						
40	200						
1	5						
400	2000						
100 200							

Klassifizierung DK I

keine Zuordnungswerte vorhanden/ nicht analysiert

< unterhalb der Bestimmungsgrenze

nb nicht bestimmbar

^{*} nach Destillation

4.1.2. Einstufung der Wände der Werkstattgebäude nach RC-Erlass

Die Wände des westlichen Werkstattgebäudes können als Z 1.2- (aufgrund des Sulfatgehalts) und die Wände des östlichen Werkstattgebäudes als Z 1.1-Material eingestuft werden (s. Tabelle 8).

Tabelle 8: Analysen der Wände des westlichen und östlichen Werkstattgebäudes

Parameter	Einheit	Wände westlicher Werkstatt-	Wände östlicher Werkstatt-	Zuordnungswerte RC-Erlass		
Prüfbericht-Nr.		102421/01	102421/02	Z 1.1	Z 1.2	Z2
Probenahmetag		0810.04.19	0810.04.19	2 1.1	2 1.2	22
MKW C10-C40	mg/kg TS	62	< 50	600	600	2000
MKW C10-C22	mg/kg TS	< 50	< 50	300	300	1000
EOX	mg/kg TS	< 1	< 1	3	5	10
PAK 16	mg/kg TS	0,28	0,16	10	15	35
PCB 6	mg/kg TS	nb	nb	0,15 0,5		1
pH-Wert	-	9,86	11,1	6,5-12,5	6,5-12,5	5,5-12,5
Leitfähigkeit	μS/cm	643	882	2500	3000	5000
Chlorid	mg/l	5,3	8,57	100	200	300
Sulfat	mg/l	263	227	250	400	600
Arsen	μg/l	< 2,0	< 2,0	15	30	60
Blei	μg/l	< 2,0	< 2	40	100	200
Cadmium	μg/l	< 1,0	< 1,0	2	5	6
Chrom	μg/l	16	5,3	30	75	100
Kupfer	μg/l	2,9	3,7	50	150	200
Nickel	μg/l	2,3	< 2,0	50	100	100
Quecksilber	μg/l	< 0,2	< 0,2	0,5	1	2
Zink	μg/l	< 10	< 10	150	300	400
Phenolindex *	μg/l	< 10	10	20	50	100
Klassifizierung		Z 1.2	Z 1.1			

keine Zuordnungswerte vorhanden/ nicht analysiert

4.1.3. Einstufung der Betonböden der Werkstattgebäude nach RC-Erlass

Bei den Betonböden des westlichen und des östlichen Werkstattgebäudes ist jeweils der Z 2-Wert für die elektrische Leitfähigkeit überschritten, bei Betonboden des östlichen Werkstattgebäudes zusätzlich der Z 2-Wert für MKW und für den Phenolindex (s. Tabelle 9).

Zur Einstufung der <u>elektrischen Leitfähigkeit</u> kann unseres Erachtens folgender Auszug aus dem von der Landesanstalt für Umwelt Baden-Württemberg (LUBW) mitbetriebenen Informations - Portal - Abfallbewertung (kurz IPA) herangezogen werden:

"Hinweis zur Interpretation der Laborergebnisse bei frischem Betonbruch mit erhöhter Leitfähigkeit: Beim Brechen von Beton wird kurzfristig nicht ausreagiertes Calciumhyroxid aufgrund Hydratation im Zement freigesetzt. Dies kann zu sehr hohen pH-Werten (> pH 13) und stark überhöhten elektrischen Leitfähigkeiten führen, ohne dass gleichzeitig erhöhte Chlorid- und Sulfat-Gehalte feststellbar sind.

< unterhalb der Bestimmungsgrenze

nb nicht bestimmbar

^{*} nach Destillation

Somit darf der Parameter "elektrische Leitfähigkeit" bei frisch gebrochenem Beton nicht als Kriterium für die Zulässigkeit bzw. Ablehnung einer Verwertung herangezogen werden, sobald alle anderen Parameter die geltenden Zuordnungswerte einhalten und kein spezifischer Verdacht auf eine Verunreinigung besteht."

(Quelle: www.abfallbewertung.org/repgen.php?report=ipa&char_id=1701_Bau&lang_id=de&avv= &synon=&kapitel=3>active=no)

Somit werden auf Grundlage des RC-Erlasses die Betonböden des westlichen Werkstattgebäudes als Z 1.1- und die Betonböden des östlichen Werkstattgebäudes als Z 2-Material eingestuft (s. Lageplan 3 in Anlage 1). Diese Beurteilung beruht auf den jeweiligen Mischproben der beiden Gebäudeteile.

Tabelle 9: Analysen der Betonböden des westlichen und östlichen Werkstattgebäudes

Parameter	Einheit	Betonboden westlicher Werkstatt- bereich	Betonboden östlicher Werkstatt- bereich	Zuordnungswerte RC-Erlass		
Prüfbericht-Nr.		102268/01	102268/02	Z 1.1	740	Z Z2
Probenahmetag		0810.04.19	0810.04.19	2 1.1	Z 1.2	22
MKW C10-C40	mg/kg TS	150	690	600	600	2000
MKW C10-C25	mg/kg TS	< 50	110	300	300	1000
EOX	mg/kg TS	< 1	< 1	3	5	10
PAK 16	mg/kg TS	nb	0,35	10	15	35
PCB 6	mg/kg TS	nb	nb	0,15	0,5	1
pH-Wert	-	12,1	12,3	6,5-12,5	6,5-12,5	5,5-12,5
Leitfähigkeit	μS/cm	3260	4540	2500 3000		5000
Chlorid	mg/l	< 5	< 5	100	200	300
Sulfat	mg/l	< 10	< 10	250	400	600
Arsen	μg/l	< 2,0	< 2,0	15	30	60
Blei	μg/l	< 2,0	5,6	40	100	200
Cadmium	μg/l	< 1,0	< 1,0	2	5	6
Chrom	μg/l	4,6	2,8	30	75	100
Kupfer	μg/l	< 2,0	3,0	50	150	200
Nickel	μg/l	< 2,0	< 2,0	50	100	100
Quecksilber	μg/l	< 0,2	< 0,2	0,5	1	2
Zink	μg/l	< 10	< 10	150	300	400
Phenolindex * µg/l		< 10	70	20	50	100
VIifi-i		744	7.0	ı		

Z 1.1

keine Zuordnungswerte vorhanden/ nicht analysiert

Klassifizierung

< unterhalb der Bestimmungsgrenze

nb nicht bestimmbar

^{*} nach Destillation

4.1.4. Einstufung der Betonböden der Werkstattgebäude und des Tanklagers für MKW nach RC-Erlass bzw. DepV

Die Tabellen 10-12 zeigen die MKW-Gehalte der untersuchten Betonböden im westlichen und östlichen Werkstattbereich und aus dem Bereich des oberirdischen Tanklagers (s. Lageplan 3 in Anlage 1).

Tabelle 10: MKW-Gehalte in den Betonböden des westlichen Werkstattbereichs

Parameter	Einheit	Halle Schwenk	RKS 12	RKS 13	RKS 21	RKS 22	Zuordnur RC-E	
Prüfbericht-Nr.		102267/03	102267/06	102267/07	102267/09	102267/10	Z 1.1	Z2
Probenahmetag		10.04.19	08.04.19	08.04.19	11.04.19	11.04.19	Z 1.2	22
MKW C10-C40	mg/kg TS	120	< 50	1110	< 50	< 50	600	2000
MKW C10-C22	mg/kg TS	< 50	< 50	225	< 50	< 50	300	1000
Klassifizierung		Z 1.1	Z 1.1	Z 2	Z 1.1	Z 1.1	-	
gefährlich: ja / nei	n	nein	nein	nein	nein	nein		

Tabelle 11: MKW-Gehalte in den Betonböden des östlichen Werkstattbereichs

Parameter	Einheit	Werkstatt Hergert	RKS 11	RKS 14	RKS 15	Lager Öncan	Zuordnungs- werte RC-Erlass		ager Zuordnungs- w ncan RC-Erlass g		Zuordn werte h lungshi gan. So stof	land- lfe or- chad-
Prüfbericht-Nr.		102267/01	102267/05	102267/01	102267/08	102267/12	Z 1.1 Z 1.2	Z2	DK 0	DKI		
Probenahmetag		08.04.19	08.04.19	09.04.19	09.04.19	09.04.19		22	DKU	DKI		
MKW C10-C40	mg/kg TS	205	899	2519	681	1038	600	2000	500	4000		
MKW C10-C22	mg/kg TS	< 50	157	362	95	137	300	1000	-	-		
Klassifizierung		Z 1.1	Z 2	DK I	Z 2	Z 2						
gefährlich: ja / ne	in	nein	nein	ja	nein	nein						

Tabelle 12: MKW-Gehalte in den Betonböden des oberirdischen Tanklagers

Parameter	er Einheit		Tankla- ger Be- tonplatte (RKS 23)	we	nungs- erte Irlass
Prüfbericht-Nr.		102267/02	102267/11	Z 1.1	7 2
Probenahmetag		10.04.19	11.04.19	Z 1.2	22
MKW C10-C40	mg/kg TS	58	665	600	2000
MKW C10-C22	mg/kg TS	< 50	504	300	1000
Klassifizierung		Z 1.1	Z 2		
gefährlich: ja / nein		nein	nein		

Die Betonböden im westlichen Werkstattgebäude können als Z 1.1-Material (Recycling-Erlass) eingestuft werden (s. Kap. 4.1.3). Unter Berücksichtigung der Einzelproben ist der Betonboden der Montagegrube (RKS 13) aufgrund seines MKW-Gehalts höher belastet und fällt in die Kategorie Z 2.

Die Betonböden im östlichen Werkstattgebäude sind als Z 2-Material (Recycling-Erlass) einzustufen (s. Kap. 4.1.3). Unter Berücksichtigung der Einzelproben ist der Betonboden der Werkstatt Hergert geringer belastet und fällt in die Kategorie Z 1.1. Dagegen ist der Betonboden der Werkstatt bei RKS 14 höher verunreinigt und fällt in die DK I-Kategorie.

Rückbau und Entsorgung der Betonflächen

Beim Rückbau der Betonflächen ist der Aufwand gegenüberzustellen, die Flächen separat auszubauen und zu entsorgen oder die Bereiche westliches und östliches Werkstattgebäude jeweils als eine Fläche zu betrachten und entsprechend den Ergebnissen des RC-Erlasses als Z 1.1- und Z 2-Material zu entsorgen.

Da die Größe der Teilflächen relativ gering ist, kann der Aufwand für einen separaten Ausbau als relativ hoch bzw. nicht angemessen eingestuft werden.

4.1.5. Untersuchungen von Bauteilen auf PAK und Einstufung nach dem RC-Erlass

Die folgenden Tabellen zeigen die Bauteile und die Asphaltflächen, die auf PAK untersucht wurden.

Tabelle 13: PAK-Gehalte im Estrich, in der Dachpappe und im Fugenmaterial

Parameter	Einheit	Estrich Wohnhaus 75 OG	Dachpappe Garage nördl. Wohnhaus 75	Fugen- material Tanklager Zapfsäule	Zuordnungswerte RC		C-Erlass
Prüfbericht-Nr.		102266/930/01	102266/02	102266/03	Z 1.1	Z 1.2	Z2
Probenahmetag		08.04.19	08.04.19	08.04.19	2 1.1	2 1.2	22
PAK 16	mg/kg TS	16,2	16,0	9,81	10	15	35
Klassifizierung		Z 2	Z 2	Z 1.1			
gefährlich: ja / nein		nein	nein	nein			

⁻ keine Zuordnungswerte vorhanden/ nicht analysiert

Der schwarze Estrich im südwestlichen Gebäude, Wohnhaus 75 OG muss separat ausgebaut und als Z 2-Material entsorgt werden.

Die Dachpappe auf der Garage des südwestlichen Gebäudes kann gemäß ihrem PAK-Gehalt als Z 2-Material entsorgt werden.

Das Fugenmaterial im Bereich des Tanklagergebäudes, Tankstelle ist unbelastet und muss nicht separat ausgebaut werden.

4.1.6. Untersuchung der Asphaltflächen auf PAK

Die PAK-Untersuchungen des Asphalts ergaben drei verschiedene Einstufungen (s. Tabelle 14 und Lageplan 4 in Anlage 1):

- → Der Asphalt zwischen dem westlichen und dem östlichen Werkstattgebäude ist nach dem Ausbau als DK I-Material und als gefährlicher Abfall einzustufen (RKS 2).
- → Der Asphalt südlich der Entwässerungsrinne zwischen der Garage im westlichen Werkstattgebäude und dem östlichen Werkstattgebäude ist nach dem Ausbau als DK I-Material, jedoch nicht als gefährlicher Abfall einzustufen (RKS 6, RKS 7).
- → Die restlichen Asphaltflächen fallen nach dem RC-Erlasss in die Z 1.1-Kategorie. Sie sind teerfrei und somit als nicht gefährlich einzustufen.

Die Entsorgung des Asphalts orientiert sich i.d.R. an dem PAK-Wert zur Einstufung als gefährlicher / nicht gefährlicher Abfall von 200 mg/kg. Somit fällt nur ein Bereich der Freiflächen in die Kategorie "gefährlicher Abfall".

< unterhalb der Bestimmungsgrenze

nb nicht bestimmbar

Tabelle 14: PAK-Gehalte im Asphalt

Parameter	Einheit	RKS 1	RKS 2	RKS 3	RKS 4	RKS 5	RKS 6	RKS 7		dnungsv C-Erlas		werte	nungs- Hand- shilfe	Strassen- bauverwal- tung	Abfallrecht BW
Prüfbericht-Nr.		102415/01	102415/02	102415/03	102415/04	102415/05	102415/06	102415/07	Z 1.1	Z 1.2	Z2	DKI	DK II	(Leitfaden BW)	(Leitfaden BW)
Probenahmetag		08.04.19	16.04.19	16.04.19	16.04.19	17.04.19	17.04.19	17.04.19	2 1.1	2 1.2	22	DKI	DKII	(Leitiadeii BVV)	(Leitiadeii BVV)
PAK 16	mg/kg OS	nb	441	7,21	nb	nb	35,5	92,3	10	15	35	500	1000	bis 25 mg/kg teerfrei	bis 200 mg/kg teerfrei
Benz(a)pyren	mg/kg OS	< 0,05	10,9	< 0,05	< 0,05	< 0,05	3,17	5,20							nicht gefährl. Abfall
Klassifizierung		Z 1.1	DK I	Z 1.1	Z 1.1	Z 1.1	DK I	DKI							
gefährlich: ja / ne	in	nein	ja	nein	nein	nein	nein	nein							
	nungswerte vo er Bestimmung imbar		nt analysiert												

4.2. Bauteile mit Verdacht auf Asbest

Die folgende Tabelle zeigt die Bauteile mit Asbest-Verdacht.

Tabelle 15: Bauteile mit Asbestverdacht

Bauteile mit Asbest-Verdac	Bauteile mit Asbest-Verdacht							
Gebäude / Ort	Bauteil/ Bezeichnung	Labor, Labor-Nr.	Einstufung					
westliches Werkstattge- bäude	Dachabdeckungen mit Wellplatten, einschl. seitli- che Einfassungen	Einstufung ohne Analytik	Asbestzement, Asbest fest gebunden					
östliches Werkstattgebäude	stliches Werkstattgebäude Dachabdeckungen mit Wellplatten		Asbestzement, Asbest fest gebunden					
Unterstand	Dachabdeckungen mit Wellplatten	Einstufung ohne Analytik	Asbestzement, Asbest fest gebunden					
Garage Herget	abgehängte Decke	Competenza NL68317.1	kein Asbest nachgewiesen, KMF > 50 %					
Wohnhaus Hindenburg- straße 75 Bodenbelagsplatte		Competenza NL68317.2	Asbest nachgewiesen (Chrysotil 5-20 %), Kleber schwach gebunden					
Werkstätten, RKS 21	Beschichtung Beton	Competenza NL68317.3	kein Asbest nachgewiesen					

Die Dachabdeckungen aus Wellplatten konnten ohne analytische Untersuchung als asbesthaltig eingestuft werden (s. Lageplan 5 in Anlage 1).

Die in zwei Räumen im Obergeschoss des südwestlichen Gebäudes, Wohnhaus angetroffenen Bodenbelagsplatten mit Kleber (ca. 28 m²) erwiesen sich als asbesthaltig. Der asbesthaltige Kleber ist als schwach gebunden einzustufen.

Beim Gebäuderückbau sind die asbesthaltigen Bauteile separat, unter Einhaltung der Arbeitsschutzvorschriften, insbesondere TRGS 519, fachgerecht auszubauen und vorschriftsmäßig, unter Einhaltung der Vorgaben des Entsorgungsträgers, von einer hierfür zugelassenen Fachfirma zu entsorgen. Für schwach gebundenes Asbest sind zusätzlich die Vorschriften des Kapitels 14 der TRGS 519 einzuhalten.

4.3. Sonstige schadstoffhaltige Bauteile: KMF und Styropor

Künstliche Mineralfasern (KMF):

KMF befinden sich in verschiedenen Bauteilen, z.B. als flächige Dämmschicht an Decken und Wänden, unter Holzböden, hinter Fassadenverkleidungen oder als Isolierung um Heizleitungen.

Aufgrund der Baujahre der Gebäude ist davon auszugehen, dass alle künstlichen Mineralfasern in den Abbruchgebäuden als krebserzeugend (alte Mineralwolle) einzustufen sind.

Beim Ausbau von künstlichen Mineralfasern im Zuge des Gebäuderückbaus sind die Arbeitsschutz-Vorgaben der TRGS 521 einzuhalten.

Bauteile mit KMF sind fachgerecht und vorschriftsmäßig zu entsorgen.

Styropor:

Styropor befindet sich in verschiedenen Bauteilen als Dämmschicht in Wänden, Decken und Böden oder hinter Fassadenverkleidungen.

Laut Umweltministerium Baden-Württemberg kann für Styropor, das älter ist als 2008, generell angenommen werden, dass der Grenzwert für HBCD überschritten ist. Eine Laboruntersuchung ist daher u.E. nicht erforderlich.

Styropor muss beim Rückbau separat ausgebaut werden. Für die Entsorgung HBCD-haltiger Materialien gelten seit August 2017 besondere Vorschriften zur Überwachung und zum Nachweis.

Leuchtstoffröhren:

Bei der Begehung und Untersuchung nicht aufgenommen wurden <u>Leuchtstoffröhren</u>, die möglicherweise PCB-haltige Kleinkondensatoren enthalten, und quecksilberhaltige <u>Energiesparlampen</u> sowie ggf. radioaktive <u>Brandmelder</u>.

4.4. Zusammenfassung Wände und Böden

Tabelle 16: Zusammenfassung der Entsorgungskategorien für Böden und Wände

Wände und Böden							
	Einstufung	maßgeblicher Parameter für die Einstufung über Z 1.1					
Wohnhaus Wände	DK I (DepV)	Sulfat					
Wände westlicher Werkstattbereich	Z 1.2 (Recycling-Erlass)	Sulfat					
Wände östlicher Werkstattbereich	Z 1.1 (Recycling-Erlass)						
Betonböden westlicher Werkstattbereich	Z 1.1 (Recycling-Erlass)						
Betonböden östlicher Werkstattbereich	Z 2 (Recycling Erlass)	MKW, Phenole					

Um die mineralischen Baurestmassen (Beton, Mauerwerk) aus dem Gebäuderückbau entsorgen zu können, sind nach dem Gebäudeabbruch **Haufwerksuntersuchungen** gemäß LAGA PN 98 erforderlich. Diese Untersuchungen sind für die Entsorgung als **Deklarationsanalysen allein maßgebend** und können von der im Rahmen der Bausubstanzerkundung festgestellten Einstufung abweichen.

Im Folgenden erfolgt eine Kostenschätzung über

- den Gebäuderückbau und
- den separaten Ausbau und die Entsorgung der kontaminierten Bausubstanz.

Die Kosten für den Gebäuderückbau können nur grob geschätzt werden, da keine Baupläne vorliegen und die genauen Abmessungen der Gebäude nicht bekannt sind.

Die Preise für den Ausbau und die Entsorgung des kontaminierten Materials beruhen auf aktuell durchgeführten, vergleichbaren Massnahmen. Sie sind aber stark von der jeweiligen Markt- und Entsorgungslage abhängig und können daher lediglich als Richtwerte herangezogen werden.

Massnahmen zur Baustelleneinrichtung und -sicherung, verkehrsrechtliche Anordnungen, und dergl. wurden nicht berücksichtigt.

5.1. Kosten für den Gebäuderückbau und die Entsorgung der Bausubstanz bis zum Z 1.1-Wert

Die folgende Tabelle zeigt die geschätzten Rückbaukosten. Der Ausbau und die Entsorgung folgender Bauteile ist in den Rückbaukosten enthalten:

- Mineralische Bausubstanz (Wände, Böden), Ausbau komplett enthalten, Entsorgung enthalten bis zum Z 1.1-Wert (Recycling-Erlass BW)
- Dachpappe
- KMF, Styropor und sonstige Dämmungen.

Es ist für die betrachteten Gebäude mit Rückbaukosten von rund **187.000 €** zu rechnen. In der nachfolgenden Tabelle 17 wird aufgeführt wie sich die Abschätzungen im Einzelnen herleiten.

Tabelle 17: Kostenschätzung für den Rückbau der Gebäude

Gebäude	Bruttorauminhalt BRI	spez. Kosten	Rückbaukosten
	m ³	€/m³	€
südwestliches Gebäude	1.900	20	38.000
westliches Werkstattgebäude	3.700	15	55.500
östliches Werkstattgebäude	2.700	15	40.500
Tanklagergebäude, Bodenplatte Tanks	250	24	6.000
Unterstand	250	10	2.500
Kosten Gebäuderückbau	8.800		142.500
IngKosten			15.000
Gesamtkosten netto			157.500
MWSt, 19 %			29.925
Gesamtkosten brutto			187.425

5.2. Kosten für den separaten Ausbau und die Entsorgung der Bausubstanz > Z 1.1, der Asphaltflächen und der Asbestbauteile

5.2.1. Mineralische Bausubstanz (Betonböden und Wände)

Die folgende Tabelle zeigt die zusätzlich anfallenden geschätzten Kosten für die Entsorgung der mineralischen Bausubstanz, die **über dem Z 1.1-Wert** nach dem Recycling-Erlass Baden-Württemberg eingestuft wurde.

Der Ausbau und die Entsorgung der mineralischen Bausubstanz **bis zum Z 1.1-Wert** nach dem Recycling-Erlass BW ist in den Gebäuderückbaukosten enthalten, die in Tabelle 17 aufgeführt sind.

Es ist mit Entsorgungskosten für die mineralische Bausubstanz > Z 1.1-Wert nach Recycling-Erlass BW in Höhe von rund 60.000 € zu rechnen.

Tabelle 18: Zusätzliche Kosten für mineralische Bausubstanz über dem Z 1.1-Wert des RC-Erlasses

Gebäude	Tonnage Böden	Einstufung	spez. Kosten	Summe
	ca.			
	t		€/t	€
Südwestliches Gebäude				
Böden, Wände	440	DK I		
Fundamente	120	Z 1.1		
Westliches Werkstattgebäude	370	Z 1.1		
Böden, Fundamente	620	Z 1.1		
Wände	480	Z 1.2		
östliches Werkstattgebäude	240	Z 2		
Böden	240	Z 2		
Wände, Fundamente	580	Z 1.1		
Tanklagergebäude				
Gebäude	60	Z 1.1		
Betonfläche Tanklager	130	Z 2		
Unterstand				
Betonfläche	70	Z 2		
Summe Z 1.1 *	1.380			
Summe Z 1.2	480		25	12.500
Summe Z 2	440		30	13.200
Summe DK I	440		40	17.600
Kosten Entsorgung mineralische Bausubstanz > Z 1.1				42.800
IngKosten (Haufwerksbeprobung)				8.000
Gesamtkosten netto				50.800
MWSt, 19 %				9.652
Gesamtkosten brutto				60.452

^{*} Entsorgung in den Rückbaukosten enthalten

5.2.2. Asphaltflächen

In der folgenden Tabelle 19 sind die geschätzten Kosten für Ausbau und Entsorgung des Asphalts der Freiflächen aufgeführt. Das massgebliche Kriterium ist hierbei der PAK-Wert von 200 mg/kg. Asphaltabfälle unter oder über diesem Wert werden i.d.R. nicht weiter unterteilt, sondern pauschal in eine der beiden Bereiche eingestuft.

Für den Ausbau und die Entsorgung des Asphalts ist mit Kosten in Höhe von rund 60.000 € zu rechnen.

Tabelle 19: Kosten für den Ausbau und die Entsorgung der Asphaltflächen

Position, Beschreibung	Einheit	Asphaltflächen > 200 mg/kg PAK	Asphaltflächen < 200 mg/kg PAK
Klassifizierung		> 200 mg/kg	< 200 mg/kg
Fläche	m ²	575	2.250
Mächtigkeit	m	0,1	0,1
Volumen	m ³	58	225
Tonnage	to	128	495
Entsorgungskosten	€/to	80	45
Entsorgungskosten	€	10.240	22.275
Asphaltbelag ausbauen	€/m²	4	4
Kosten für Ausbau	€	2.300	9.000
Deklarationsanalytik	€	700	700
IngKosten	€	1.500	1.500
Summe	€	14.740	33.475
Occamiliantes nett-		40.245	
Gesamtkosten netto	€	48.215	
MWSt, 19 %	€	9.160	
Gesamtkosten brutto	€	57.375	

5.2.3. Asbesthaltige Bauteile

Die folgende Tabelle 20 zeigt die geschätzten Kosten für Ausbau und Entsorgung der asbesthaltigen Bodenbelagsplatten im Wohnhaus (südwestlicher Gebäudeteil), die sich auf ca. 3.000 € belaufen.

Tabelle 20: Kosten für den Ausbau und die Entsorgung der asbesthaltigen Bauteile im Wohnhaus 75

Position, Beschreibung	Einheit	
Fläche	m ²	28
spez. Kosten für Ausbau, Entsorgung	€/m²	50
Kosten für Ausbau, Entsorgung	€	1.400
IngKosten	€	600
Gesamtkosten netto	€	2.000
MWSt, 19 %	€	380
Gesamtkosten brutto	€	2.380

In Tabelle 21 sind die geschätzten Kosten für Ausbau und Entsorgung der Asbestzementdächer aufgeführt, die mit rund **20.000 €** zu veranschlagen sind.

Tabelle 21: Kosten für den Ausbau und die Entsorgung der asbesthaltigen Dächer

Position, Beschreibung	Einheit	
Fläche	m ²	1.400
Mächtigkeit	mm	4
Volumen	m ³	ca. 6
Tonnage	to	ca. 10
Klassifizierung		asbesthaltig
Entsorgungskosten	€/to	150
Entsorgungskosten	€	1.500
Asbesttementdächer	€/m²	10
Kosten für Ausbau	€	14.000
IngKosten	€	1.500
Gesamtkosten netto	€	17.000
MWSt, 19 %	€	3.230
Gesamtkosten brutto	€	20.230

Für sonstige asbest- und KMF haltige Baustoffe in nicht zugänglichen Bereichen, wie z.B. Dachpappen, Spachtel- und Ausgleichsmassen, und dergl. veranschlagen wir eine Sume von **20.000 €** netto.

5.3. Kostenübersicht Bausubstanz

In Tabelle 22 sind die Kosten für den Ausbau und die Entsorgung der asbesthaltigen Bauteile, aller Asphaltflächen sowie der Betonböden und Wände > Z 1.1 aufgelistet. Sie belaufen sich auf ca. 195.000 €.

Tabelle 22: Kostenzusammenstellung für den Rückbau sowie Ausbau und Entsorgung Bauteile

Position, Beschreibung	Kosten, netto €	19 % Mwst €	Kosten, brutto €
Entsorgung mineralische Bausubstanz (Betonböden, Wände) > Z 1.1	50.800	9.652	60.452
Asphaltflächen (Ausbau und Entsorgung)	48.215	9.160	57.375
Asbesthaltige Bauteile (Ausbau und Entsorgung)	39.000	7.410	46.410
Gesamtkosten netto MWSt. 19 %			164.237 31.205
Gesamtkosten brutto			195.442

6. Untergrunduntersuchungen

6.1. Aufgabenstellung

Für die Untersuchung des Untergrundes waren 10 Rammkernsondierungen vorgesehen mit dem Ziel, anfallende Aushubmassen zu deklarieren und eine Abschätzung der Entsorgungskosten vorzunehmen. Auch für die asphaltierten Flächen sollte eine Ermittlung der Massen, deren Entsorgung und Kosten durchgeführt werden. Die Deklarationen und die daraus abgeleiteten Kostenschätzungen wurden bereits in Kap. 4.1.6 und 5.2.2 ausgeführt.

Eine Darstellung des historischen Werdegangs der Liegenschaft, der heutigen Nutzung, der geo- und hydrogeologischen Verhältnisse, usw. ist im Bericht zur orientierenden Untersuchung aufgeführt. Auf eine Wiederholung wird an dieser Stelle verzichtet.

6.2. Durchführung und Umfang der Arbeiten

Die Geländearbeiten wurden im April 2019 durchgeführt.

An 10 Stellen wurden DN 60 Rammkernsondierungen bis i.d.R. 3 m Tiefe abgeteuft (s. Lageplan 1 in Anlage 1). Mit Ausnahme von RKS 8 und 8a (Grünlandbereich) wurden überall künstliche Auffüllungen vorgefunden. Die Fläche wurde daraufhin in 7 Bereiche unterteilt. Aus dem Probenmaterial der künstlichen Auffüllungen der Sondierungen RKS 1-10 wurden Mischproben hergestellt und auf die Parameter der VwV BW¹⁰ analysiert.

Aus den Sondierungen der etwa zeitgleich durchgeführten orientierenden Untersuchung wurden zusätzlich Proben zur Charakterisierung der Auffüllbereiche verwandt (RKS 11, 14, 16, 21, 22, 26, 27, 30-32).

Nach Vorliegen der Analysen der untersuchten Auffüllbereiche wurden für den massgeblichen Parameter PAK Säuleneluatuntersuchungen durchgeführt. Diese sind für die Entsorgungsproblematik von untergeordneter Bedeutung, nicht jedoch für die Abschätzung einer Gefährdung für den Wirkungspfad Boden – Grundwasser nach Bundesbodenschutzverordnung. Eine entsprechende Gefährdungsabschätzung ist Gegenstand der orientierenden Untersuchung¹¹ und wird dort aufgeführt.

Die Auffüllbereiche 6 und 7 basieren i.W. auf den Proben aus der orientierenden Untersuchung. Zur Vervollständigung der Betrachtung der aufgefüllten Bereiche werden sie hier mit aufgeführt.

Aus den Sondierungen RKS 9 und 10 wurden zusätzlich Analysen auf weitere Einzelparameter durchgeführt. Aufgrund der mittlerweile festgestellten CKW-Belastungen des Grundwassers auf dem übrigen Gelände wurden aus beiden Sondierunten Grundwasserproben entnommen,. Der Sondierpunkt RKS 10 liegt im unmittelbaren Umfeld der ehemaligen südlichen Tankstelle. Zur Abgrenzung der hier vorgefundenen Verunreinigungen wurden tankstellenspezifische Parameter mit untersucht.

Verwaltungsvorschrift des Umweltministeriums für die Verwertung von als Abfall eingestuftem Bodenmaterial; 14.03. 2007, geändert 29.12.2017; gültig bis 31.12.2019

Otientierende Untersuchung des AS Mauthe, Hindenburgstrasse in Balingen; Berghof Analytik + Umweltengineering Gmbh; 23.09.2019

Auffüllbereich	Sondierpunkt	Entnahmetiefe der Einzelproben	Unter- suchte Parameter	Labor-Nr.	Parameter	Labor-Nr.
		m u. GOK	Feststoff		Eluat	
Auffüllbereich 1	RKS 1	0,1-1,0	VwV BW	102414/01	PAK	102950/01
	RKS 6	0,1-0,7				
	RKS 7	0,1-0,6				
Auffüllbereich 2	RKS 3	0,1-1,0	VwV BW	102414/02	PAK	102950/02
		1,0-2,0				
	RKS 4	0,1-1,0				
		1,0-1,8				
		2,5-3,0				
Auffüllbereich 3	RKS 5	0,1-0,6	VwV BW	102414/03	PAK	102950/03
	RKS 16	0,1-1,0				
Auffüllbereich 4	RKS 2	0,1-1,0	VwV BW	102414/04	PAK	102950/04
	RKS 26	0,1-1,0				
	RKS 27	0,1-1,0				
Auffüllbereich 5	RKS 30	0,1-1,0	VwV BW	102414/05		
	RKS 31	0,1-0,8				
	RKS 32	0,1-1,0				
Auffüllbereich 6	RKS 21	0,6-1,0	VwV BW	103125/01		
	RKS 22	0,2-1,0				
	RKS 9	0,15-0,7				
Auffülbereich 7	RKS 11	0,2-1,0	VwV BW	103125/02		
	RKS 14	0,1-0,7				
	RKS 10	0.3-0.7	1			

Tabelle 24: Probenliste der Sondierpunkte RKS 9 und 10

Sondierpunkt	Entnahmetiefe	Parameter	Labor-Nr.	Parameter	Labor-Nr.
	m u. GOK	Feststoff		Grundwasser	
RKS 9				CKW	103128/04
RKS 10	1,0-2,0	MKW, BTX, CKW	103125/03	MKW, BTX, CKW, PAK	103125/05

6.3. Untergrundverhältnisse

Unter einer ca. 10 cm starken Schwarzdecke folgen anthropogene Auffüllungen bis etwa 1 m Tiefe. Diese bestehen i.W. aus körnigem Material (Kies, Sand) und untergeordnet aus schluffigem Erdmaterial. Als Beimengungen treten vor allem Bauschutt (Ziegel, Beton) und Verbrennungsrückstände auf. Stellenweise konnte ein Teergeruch wahrgenommen werden. Unterhalb der anthropogenen Auffüllungen folgen die Talauesedimente mit Mächtigkeiten von ca. 1-2 m. Es sind braune überwiegend schluffige Ablagerungen, oft mit Pflanzenresten durchsetzt. Sie werden unterlagert von grundwasserführenden fluviatilen Kiesen. Die Basis der Kiese bilden die Tonsteine des Lias α .

Fasst man den Aufbau der einzelnen Sondierungen zusammen, so ergibt sich folgendes Normalprofil:

- -0,1 m Asphalt
- -1,0 m Auffüllungen
- -2,5 m Talauesedimente
- -4,0 m Kiese
- > 4,0 m Tonsteine

Im Bereich der Grünfläche bei den Punkten RKS 8 und 8a wurden keine Auffüllungen vorgefunden.

6.4. Auffüllbereiche

6.4.1. Anlaysen der Auffüllungen

Die Auffüllungen bestanden i.W. aus Kies und Sand mit Beimengungen von Bauschutt, Erdaushub und Verbrennungsrückständen. Die Verbrennungsrückstände sind nicht näher charakterisierbar; es können Schlacken, Aschen, Reste von Schwarzdecken und dergl sein. Stellenweise war ein Teergeruch wahrnehmbar. Die Auffüllmächtigkeit beträgt im Durchschnitt ca. 1 m.

Für die Deklaration von anfallenden Aushubmengen aus diesem Auffüllungshorizont wurden Einzelproben benachbarter Sondierpunkte zu Mischproben zusammengefügt und auf die Parameter der VwV BW analysiert (s. Lageplan 6 in Anlage 1).

Ergebnis

Es traten vor allem drei Stoffgruppen mit Konzentrationen über den natürlichen geogenen Konzentrationen (entspricht den Z 0-Werten) in Erscheinung:

→ Schwermetalle, PAK und Sulfat (s. Tabelle 25).

Schwermetalle

Arsen: Die erhöhten Gehalte an Arsen können vermutlich auf die Erdaushubanteile zurückgeführt werden. Im Raum Balingen ist der Lias weit verbreitet. Dieser kann geogen bedingt erhöhte Arsengehalte aufweisen. Folglich könnten die Erhöhungen auch natürlich bedingt sein.

Blei, Cadmium, Chrom, Kupfer, Nickel und Zink weisen nur sehr geringfügig erhöhte Werte auf, die im Z 0*IIIA-Bereich liegen. Ein geogener Hintergrund ist auch für diese Elemente nicht auszuschließen.

<u>Sulfat</u>

In drei der sieben Proben fallen die Sulfatwerte in die Kategorie Z 1.2, Z 2 und DK I. Ihre Herkunft ist wahrscheinlich durch die Bauschuttbeimengungen bedingt (gipshaltige Abfälle). Dies bewirkt auch eine Erhöhung des pH-Wertes und der elektrischen Leitfähigkeit. Diese beiden Parameter sind für die Entsorgung von Abfällen von untergeordneter Bedeutung und stellen kein Ausschlusskriterium dar für die Zuordnung von Abfall in die jeweiligen Kategorien.

PAK

Mit Ausnahme des Auffüllbereichs 5 lagen erhöhte bis hohe PAK-Gehalte vor, zwischen ca. 10 und maximal 220 mg/kg TS. Entsprechend hoch sind die Entsorgungskategorien: Z 2 und DK I. Sie bilden den handlungsbestimmenden Parameter für die Entsorgung.

PAK sind typische Vertreter von Verbrennungsprodukten und Schwarzdecken. Die hohen Konzentrationen sind vermutlich auf diese Abfälle zurückzuführen.

Im Hinblick auf eine Gefährdung des Grundwassers wurden Eluatanalysen durchgeführt. Da sie für die Entsorgung unerheblich sind, werden sie hier nicht aufgeführt. Die PAK-Befunde sind Gegenstand der orientierenden Untersuchung und werden dort diskutiert.

Zuordnungwerte Handlungshilfe

DK I

4000

DK 0

500

Tabelle 25: Analysenwerte der Auffüllbereiche nach Parameter der VwV BW

Prüfbericht-Nr.			bereich 2	bereich 3	Auffüll- bereich 4	Auffüll- bereich 5	Auffüll- bereich 6	Auffüll- bereich 7	Zuordnungswerte VwV BadWürtt.					
		102414/01	102414/02	102414/03	102414/04	102414/05	103125/01	103125/02	Z 0					
Probenahmetag		08.,17.04.19	16.04.19	09.,17.04.19	15.,16.04.19	17.04.19			Sand	Z 0*III A	Z 0*	Z 1.1	Z 1.2	Z 2
Bodenart		S	S	S	S	S	S	S						
MKW C10-C40 m	mg/kg TS	< 50	90	55	< 50	< 50	< 50	< 50	100	100	400	600	600	2000
MKW C10-C22 m	mg/kg TS	< 50	< 50	< 50	< 50	< 50	< 50	< 50	100	100	200	300	300	1000
EOX m	mg/kg TS	< 1	< 1	< 1	< 1	<1	< 1	< 1	1	1	1	3	3	10
Arsen m	mg/kg TS	16,7	20,8	16,9	9,4	23,5	10,5	23,0	10	15	15	45	45	150
Blei m	mg/kg TS	35,6	59,5	60,1	17,8	23,4	40,6	21,5	40	100	140	210	210	700
Cadmium m	mg/kg TS	0,22	0,50	0,21	0,26	< 0,20	0,29	1,16	0,4	1,5	1,0	3	3	10
Chrom m	mg/kg TS	28,2	40,4	38,0	25,0	36,6	25,1	42,1	30	100	100	180	180	600
Kupfer m	mg/kg TS	21,9	33,4	25,3	20,5	24,7	28,1	40,1	20	60	60	120	120	400
Nickel m	mg/kg TS	25,2	36,9	38,5	22,8	42,3	27,1	31,1	15	70	70	150	150	500
Quecksilber m	mg/kg TS	0,05	0,10	0,05	< 0,05	< 0,50	< 0,05	< 0,05	0,1	1,0	1,0	1,5	1,5	5
Thallium m	mg/kg TS	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	0,4	1,0	0,7	2,1	2,1	7
Zink m	mg/kg TS	96,9	168	92,5	143	143	108	139	60	200	200	450	450	1500
Cyanide ges. m	mg/kg TS	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	-	-	-	3	3	10
PAK 16 m	mg/kg TS	118	115	219	12,1	0,16	26,3	10,3	3	3	3	3	9	30
Benzo-a-pyren m	mg/kg TS	5,97	6,80	10,50	0,51	< 0,05	1,38	0,38	0,3	0,3	0,6	0,9	0,9	3
BTEX m	mg/kg TS	nb	nb	nb	nb	nb	nb	nb	1	1	1	1	1	1
LHKW m	mg/kg TS	nb	0,10	nb	nb	nb	0,15	0,05	1	1	1	1	1	1
PCB 7 m	mg/kg TS	nb	nb	nb	nb	nb	nb	nb	0,05	0,05	0,1	0,15	0,15	0,5
pH-Wert	-	8,70	8,30	10,2	8,81	8,46	8,05	8,61	6,5-	6,5-	6,5-	6,5-	6-12	6-12
Leitfähigkeit	μS/cm	157	565	163	133	132	1363	359	250	250	250	250	1500	2000
Chlorid	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	30	30	30	30	50	100
Sulfat	mg/l	< 10	59,4	11,5	< 10	< 10	769	116	50	50	50	50	100	150
Cyanide, ges.	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	5	5	5	5	10	20
Phenolindex	μg/l	< 10	< 10	20,0	< 10	< 10	< 10	< 10	20	20	20	20	40	100
Arsen	μg/l	3,2	< 2,0	6,0	2,2	< 2,0	< 2,0	< 2,0	-	14	14	14	20	60
Blei	μg/l	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	-	40	40	40	80	200
Cadmium	μg/l	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	-	1,5	1,5	1,5	3	6
Chrom	μg/l	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	2,4	-	12,5	12,5	12,5	25	60
Kupfer	μg/l	3,2	2,6	7,4	< 2,0	3,1	< 2,0	< 2,0	-	20	20	20	60	100
Nickel	μg/l	< 2,0	2,7	< 2,0	< 2,0	< 2,0	< 2,0	< 2,0	-	15	15	15	20	70
Quecksilber	μg/l	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	-	0,5	0,5	0,5	1	2
Zink	μg/l	< 10	< 10	< 10	< 10	< 10	< 10	< 10	-	150	150	150	200	600

⁵⁰⁰ 30 6 6/30 2 5/10 5 2000 100

DK I

DK I

DK I

Klassifizierung

DK I

Z 2

Z 1.1

Z 2

⁻ keine Zuordnungswerte vorhanden / nicht analysiert < unterhalb der Bestimmungsgrenze nb nicht bestimmbar

Die Auffüllungen der Freiflächen wurden nach der VwV BW untersucht. Die sieben Bereiche entfallen in die Kategorien Z 1.1, Z 2 und DK I (s. Lageplan 6 in Anlage 1). Hier wurden nur die Entsorgungskosten berücksichtigt, da uns zum gegenwärtigen Zeitpunkt die Detailplanung nicht vorliegt.

Ferner können die Planungen für die künftige Nutzung eventuell den Gegebenheiten des Untergrundes, bzw. deren Entsorgung, angepasst werden.

Insgesamt handelt es sich hier um erste grobe Kostenschätzungen, die nach weiteren gemeinsamen Abstimmungen mit der Stadt Balingen, Fachplanern und auch der Fachbehörde weiter konkretisiert werden müssen. Ggfs. sind weitere ergänzende Bodenuntersuchungen zur Eingrenzung der flächigen Kontaminationen sinnvoll.

Für die Entsorgung von allen Auffüllungen fallen Kosten von ca. 420.000 € an.

Position, Beschreibung	Einheit	Z 1.1 - Kategorie	Z 2 - Kategorie	DK I - Kategorie
Auffüllbereiche		5	4, 7	1, 2, 3, 6
Fläche	m ²	575	550	2.575
Mächtigkeit	m	1	1	1
Volumen	m ³	575	550	2.575
Tonnage	to	1.150	1.100	5.150
spez. Entsorgungskosten	€/to	25	35	55
Entsorgungskosten	€	28.750	38.500	283.250
Gesamtkosten netto	€	350.500		
MWSt, 19 %	€	66.595		
Gesamtkosten brutto	€	417.095		

Tabelle 26: Kostenberechnung für die Entsorgung der Auffüllungen

Kostenschätzung für die Beseitigung von fünf festgestellten Belastungsbereichen

Aufgrund der bisher vorliegenden Ergebnisse, unter Einbeziehung der Erkenntnisse aus der orientierenden Untersuchung, können nach derzeitigem Kenntnisstand auf dem untersuchten Areal fünf Belastungsbereiche ausgewiesen werden, an denen auf Grund der früheren Nutzung Konzentrationen über dem Z 0-Wert und damit über den geogenen Hintergrundwerten ermittelt wurden (s. Lageplan 7 in Anlage 1). Es sind dies:

- Tankstelle Süd
- \rightarrow Tankstelle Nord
- Abscheider beim oberirdischen Tanklager
- \rightarrow Altöltank
- Abscheider und Schlammfang

Im Folgenden wird eine erste, grobe Kostenschätzung zur Entfernung der Anlagen (wie Tanks und Abscheider), des verunreinigten Erdreichs und der notwendigen Wasserabreinigung aufgeführt. Für alle Bereiche liegen bislang keine vertikalen und lateralen Abgrenzungen der Verunreinigungen vor. Es

Aufgrund der geplanten Neugestaltung des Geländes gehen wir davon aus, dass die Anlagen entfernt werden (müssen). Eine umweltrechtliche Notwendigkeit, die Analgen auszubauen, ist davon unberührt. Sie basiert auf den jeweiligen Schadstoffen, deren Konzentrationen und Verbreitung. Sie werden in Bezug zur aktuellen oder zukünftigen Nutzung gesetzt und mit den Prüfwerten der relevanten Wirkungspfade abgeglichen und ist mit dem Landratsamt abzustimmen.

Maßnahmen zur Baustelleneinrichtung und -sicherung, verkehrsrechtliche Anordnungen, und dergl. wurden nicht berücksichtigt.

6.5.1. Kalkulationsgrundlagen

Die Kalkulation zur Entfernung der fünf Schadensbereiche beruht auf folgenden Angaben.

Aushub und Entsorgungskosten:	
Z 1.1	25 € /to
Z 1.2	
Z 2	
DK 0	
DK I	
DK II	
Reinigung und techn. Prüfung der Tanks	
Entsorgung der Tanks	
Ausheben und Laden von Aushub	
Rückbau von Abscheidern, Schlammfang NG 3	
Rückbau von Abscheidern, Schlammfang NG 10	
Liefern und Einbau von Fremdmaterial zur Verfüllung der Baugruben	
Ausbau von Betonoberflächen	
Wasserabreinigung für alle Schadensbereiche:	
Lieferung und Gestellung einer Anlage bestehend aus Kies-Sandfilter,	
Aktivkohlefilter und Polizeifilter, Pumpen, Schläuche, Armaturen;	
Auf- und Abbau, Umsetzen	
Pauschal15	5.000€
Analytik je Schadensbereich:	
zwei Analysen zur Deklaration des Aushubs nach DepV	
2 x 350 €	700 €
ca. fünf Wand- und Sohlanalysen der Baugruben auf MKW, PAK, BTX, z.T. PCB	
5 x 120 €	600 €
drei Wasseranalysen auf MKW, PAK, BTX, CKW, z.T. PCB	

6.5.2. Kostenzusammmenstellung

In der nachfolgenden Tabelle 27sind die Kosten für die Entfernung der Schadensbereiche zusammengestellt. Sie belaufen sich auf ca. 120.000 €.

Tabelle 27: Kostenzusammenstellung zur Entfernung der fünf Schadensbereiche

Bezeichnung	Einheit	Schadensbereich 1		Schadensbereich 2	Schadensbereich 3	Schadensbereich 4	Schadensbereich 5
		Tankstelle Süd		Tankstelle Nord	Altöltank	Ölabscheider und Schlammfang	Ölabscheider u. Schlamm- fang oberird. Tanklager
Verunreinigter Bereich							
Fläche	m ²	5 x 5 m = 25		5 x 8 m = 40	5 x 5 m = 25	2 x 2 m x 2 = 8	4 x 4 m =16 -5 = 11
Mächtigkeit der Verunreinigungen	m	3		3	2	3	2
Volumen	m ³	75		120	50	24	22
Tonnage	to	150		240	100	48	44
Massgeblicher Schadstoff		BTX		MKW	PCB	MKW	MKW
Entsorgungskategorie		DK II		DK I	Z 2	Z 1.1	Z 2
Entsorgungskosten	€	9.7	750	13.200	3.500	1.200	1.540
Nicht verunreinigter Bereich							
Fläche	m ²	5 x 5 = 25		5 x 8 m = 40	5 x 5 = 25		4 x 4 m =16 - 5 = 11
Mächtigkeit	m	1		1	2		2
Volumen	m ³	25		40	50		22
Tonnage	to	50		80	100		44
Entsorgungskategorie		Z 2		DK I	Z 1.1		Z 1.1
Entsorgungskosten	€	1.7	750	5.200	2.500		1.100
Bauarbeiten							
Ausheben und laden von Aushub	m ³	100		160	100	24	44
Tonnage	to	200		320	200	48	88
Kosten ausheben und laden	€	1.0	000	1.600	1.000	250	440
Ausbau von Betonflächen	€		500	800	500		320
Entsorgung Beton	€	;	385	1.560	150		100
Reinigung Tank	€	1.0	000	1.000	1.000		
Entsorgung Tank	€	ļ	500	500	500		
Rückbau Abscheider NG 3	€					2.400	
Rückbau Abscheider NG 10	€						1.800
Summe	€	3.3	385	5.460	3.150	2.650	2.660
Analytik							
Deklaration	€		700	700	700	700	700
Wand-Sohlbeprobungen	€	(600	600	600	600	600
Wasser	€	;	360	360	360	360	360
Summe	€	1.0	630	1.630	1.630	1.630	1.630
Wasserreinigung	€	3.0	000	3.000	3.000	3.000	3.000
Summe	€	19.	515	28.490	13.780	8.480	9.930
IngKosten							
Vorbereitung, Baubegleitung, Do- kumentation	€	3.9	950	3.950	3.950	3.950	3.950
Summe	€	19.	750				
Gesamtsumme netto	€	99.9	945				
MWSt, 19 %	€	19.9	990				
Gesamtsumme brutto	е	118.9	935				

7. Verzeichnisse

7.1. Tabellenverzeichnis

Tabelle 1:	Bodenbelagsplatte im sudwestlichen Gebaude	9
Tabelle 2:	PAK im Estrich im Obergeschoss des Wohnhauses 75	9
Tabelle 3:	Flanschdichtungen im Keller des Wohnhauses 75	10
Tabelle 4:	Dachpappe auf Garagendach	10
Tabelle 5:	Abgehängte Decke im westlichen Werkstattgebäude	11
Tabelle 6:	Asphaltfugen im Tanklagerbereich	13
Tabelle 7:	Analysen der Wände von Wohnhaus Nr. 75	14
Tabelle 8:	Analysen der Wände des westlichen und östlichen Werkstattgebäudes	15
Tabelle 9:	Analysen der Betonböden des westlichen und östlichen Werkstattgebäudes	16
Tabelle 10:	MKW-Gehalte in den Betonböden des westlichen Werkstattbereichs	17
Tabelle 11:	MKW-Gehalte in den Betonböden des östlichen Werkstattbereichs	17
Tabelle 12:	MKW-Gehalte in den Betonböden des oberirdischen Tanklagers	17
Tabelle 13:	PAK-Gehalte im Estrich, in der Dachpappe und im Fugenmaterial	18
Tabelle 14:	PAK-Gehalte im Asphalt	19
Tabelle 15:	Bauteile mit Asbestverdacht	20
Tabelle 16:	Zusammenfassung der Entsorgungskategorien für Böden und Wände	21
Tabelle 17:	Kostenschätzung für den Rückbau der Gebäude	22
Tabelle 18:	Zusätzliche Kosten für mineralische Bausubstanz über dem Z 1.1-Wert des RC-Erlasses	23
Tabelle 19:	Kosten für den Ausbau und die Entsorgung der Asphaltflächen	24
Tabelle 20:	Kosten für den Ausbau und die Entsorgung der asbesthaltigen Bauteile im Wohnhaus 75	24
Tabelle 21:	Kosten für den Ausbau und die Entsorgung der asbesthaltigen Dächer	25
Tabelle 22:	Kostenzusammenstellung für den Rückbau sowie Ausbau und Entsorgung Bauteile	25
Tabelle 23:	Probenliste der Auffüllbereiche	27
Tabelle 24:	Probenliste der Sondierpunkte RKS 9 und 10	27
Tabelle 25:	Analysenwerte der Auffüllbereiche nach Parameter der VwV BW	29
Tabelle 26:	Kostenberechnung für die Entsorgung der Auffüllungen	30
Tabelle 27:	Kostenzusammenstellung zur Entfernung der fünf Schadensbereiche	33

7.2. Abkürzungsverzeichnis

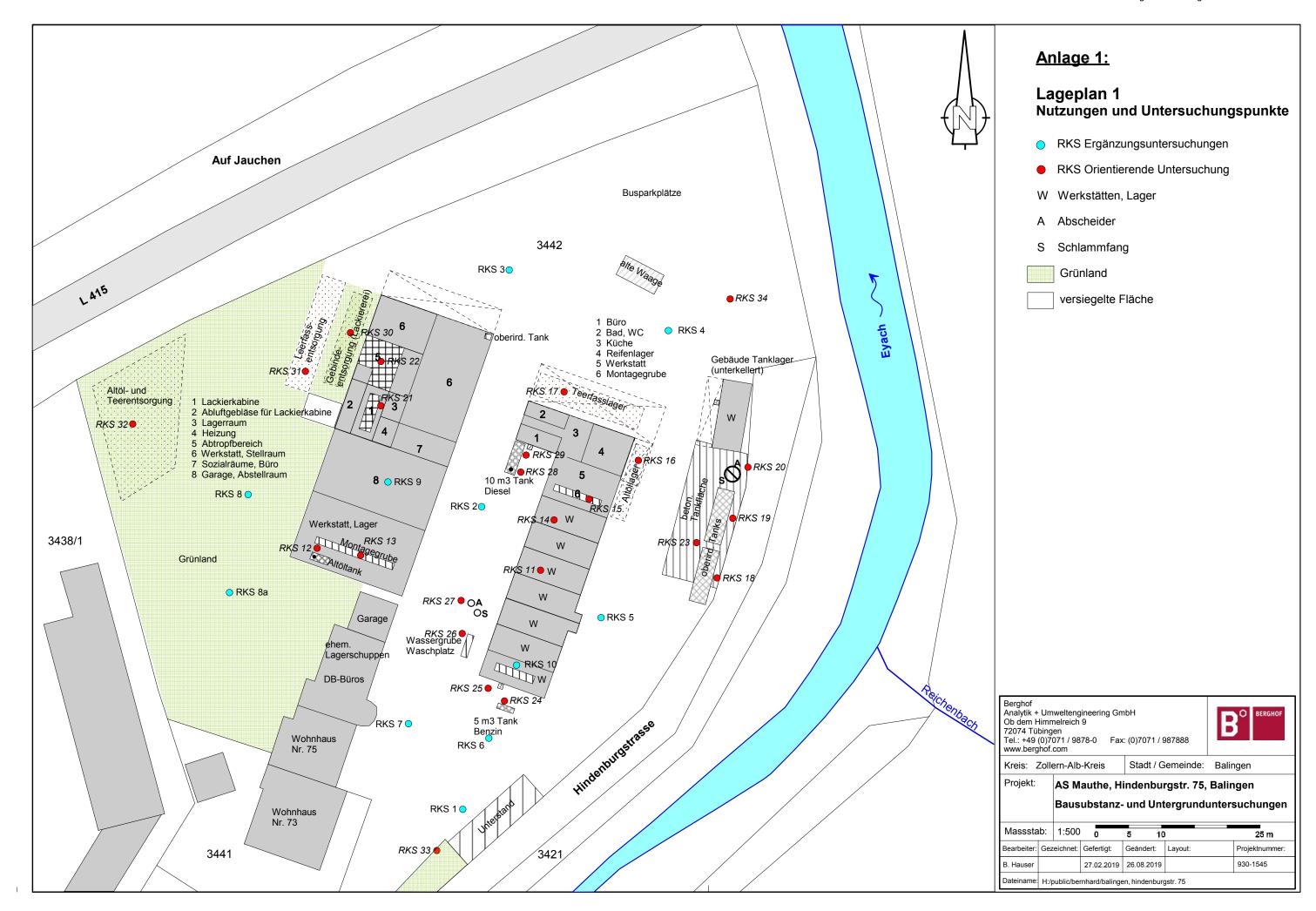
Kürzel	Beschreibung
MKW	Mineralölkohlenwasserstoffe
MKW C10-C40	Mineralölkohlenwasserstoffe mit 10 bis 40 C-Atomen
MKW C10-C22	Mineralölkohlenwasserstoffe mit 10 bis 22 C-Atomen
CKW	Chlorierte Kohlenwasserstoffe
BTX	Aromatische Kohlenwasserstoffe
SM	Schwermetalle
As	Arsen
Pb	Blei
Cd	Cadmium
Cr ges.	Chrom gesamt
Cu	Kupfer
Ni	Nickel
Hg	Quecklsilber
Zn	Zink
PAK	Polyzyklische Kohlenwasserstoffe
BaP	Benz(a)pyren
PCB	Polychlorierte Biphenyle
MP	Mischprobe
КВ	Kernbohrung
UG	Untergeschoss
EG	Erdgeschoss
OG	Obergeschoss
KMF	Künstliche Mineralfasern
MKW	Mineralöl-Kohlenwasserstoffe
HBCD/ HBCDD	Hexabromcyclododekan
DepV	Deponieverordnung
DK	Deponieklasse
RC	Recycling Baustoffe

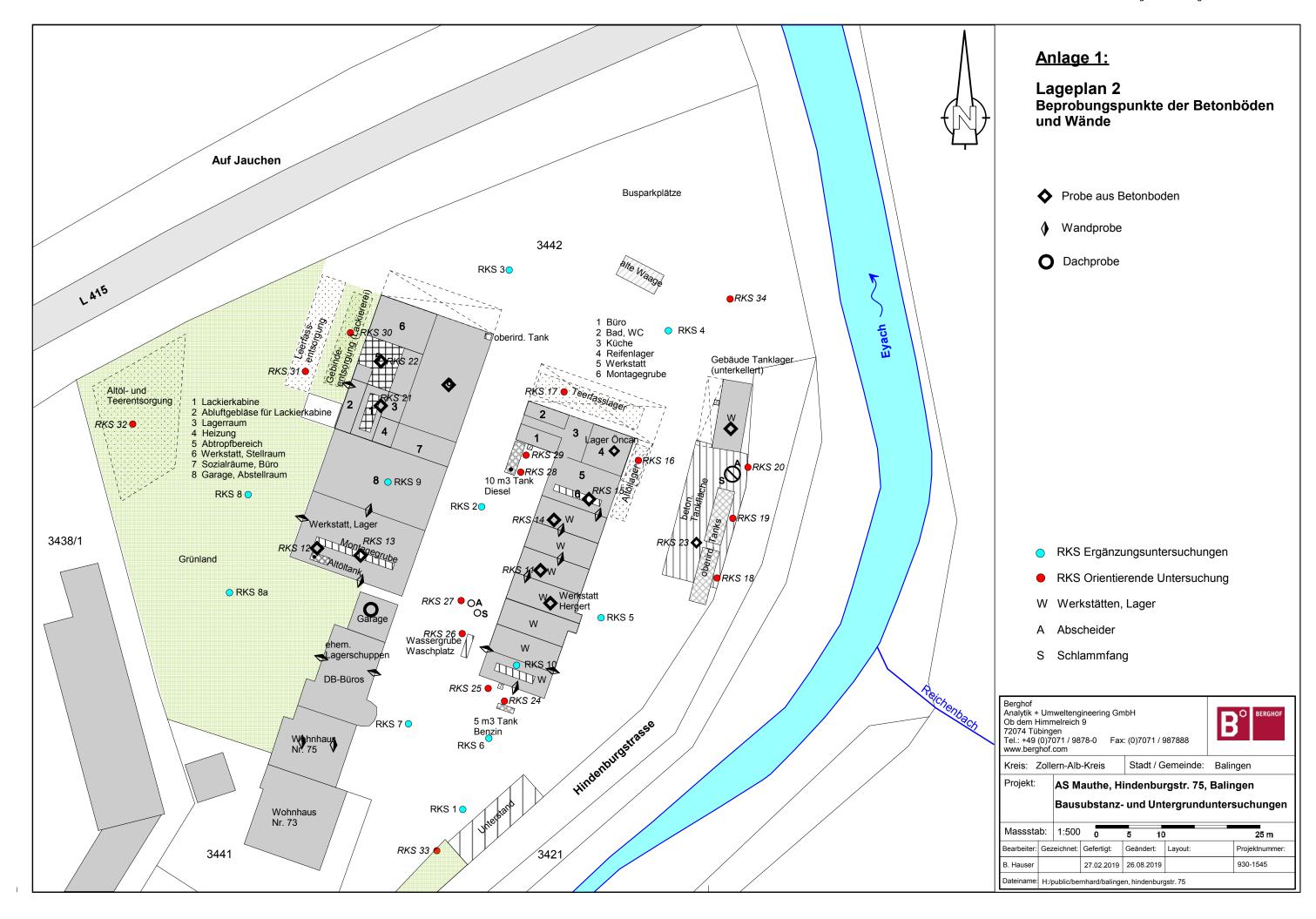
Anlagenverzeichnis

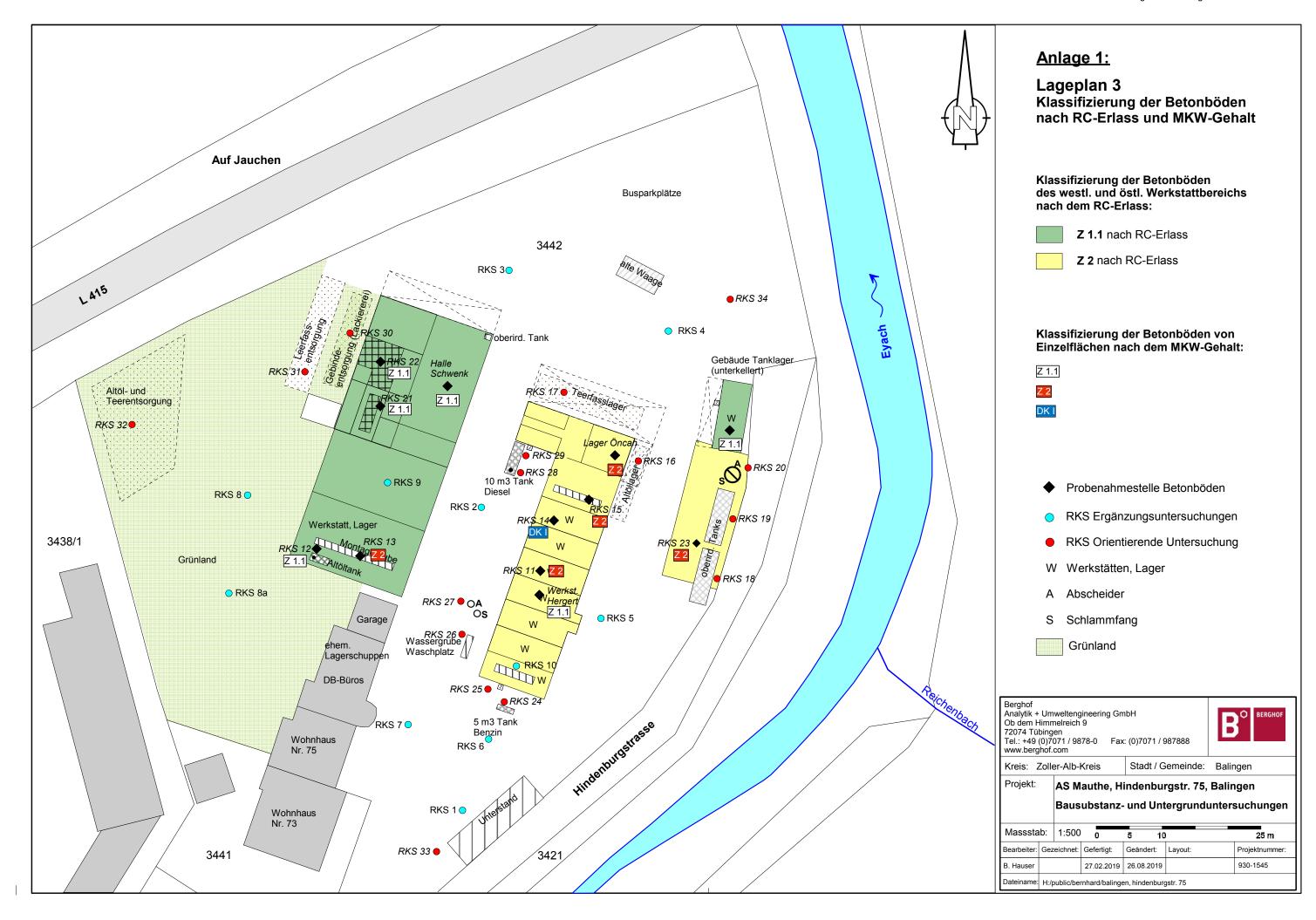
Nr.	Beschreibung
1	Lagepläne
	Lageplan 1: Nutzungen und Untersuchungspunkte
	Lageplan 2: Beprobungspunkten der Betonböden und Wände
	Lageplan 3: Klassifizierung der Betonböden nach RC-Erlass und MKW-Gehalt
	Lageplan 4: Klasifizierung der Asphaltflächen nach dem PAK-Gehalt
	Lageplan 5: Klassifizierung der Dachabdeckungen
	Lageplan 6: Klassifizierung der Auffüllbereiche
	Lageplan 7: Schadensbereiche
2	Fotodokumentation
3	Sondierprofile
4	Analysenbefunde

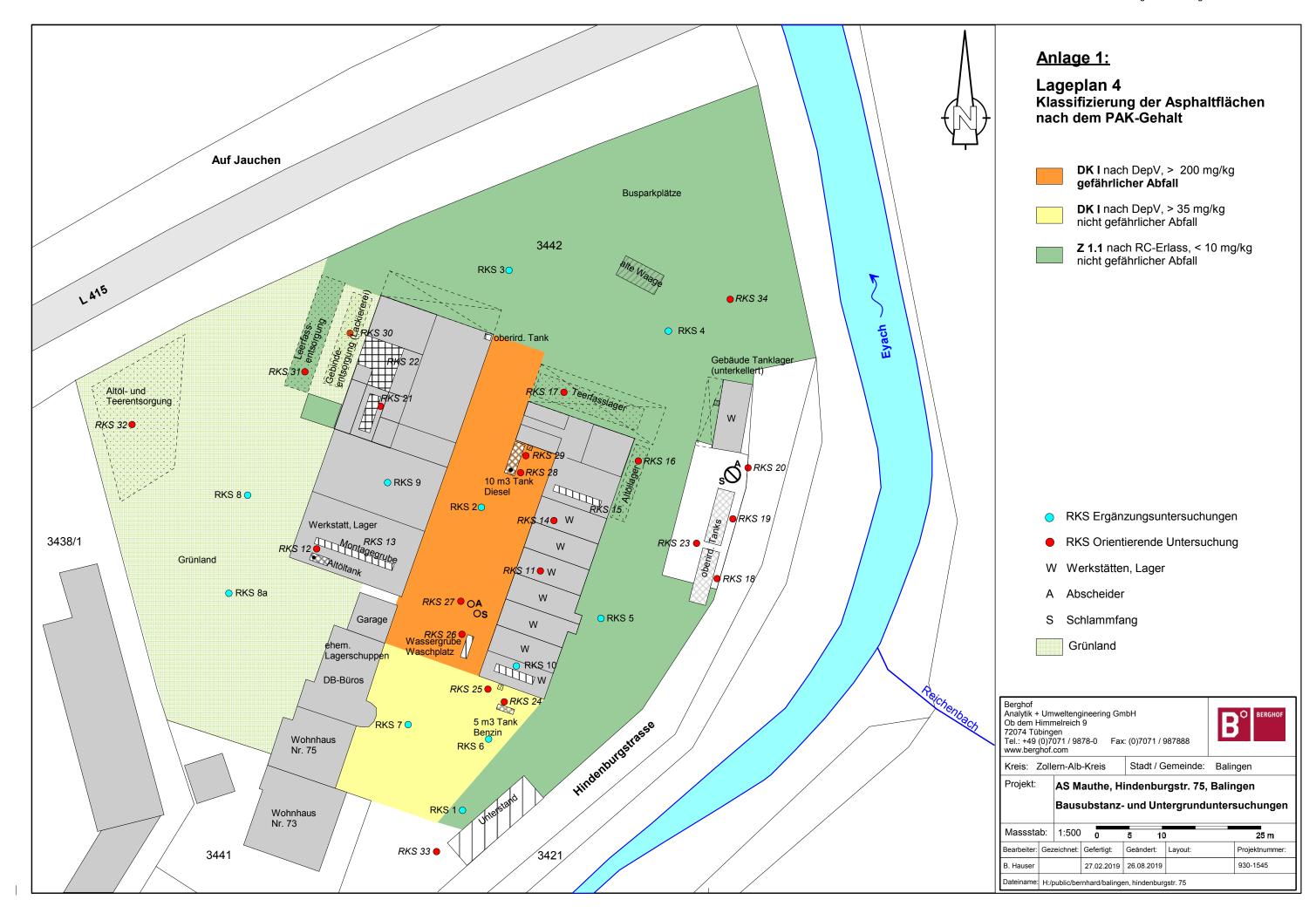
Lageplan 1 Nutzungen und Untersuchungspunkte

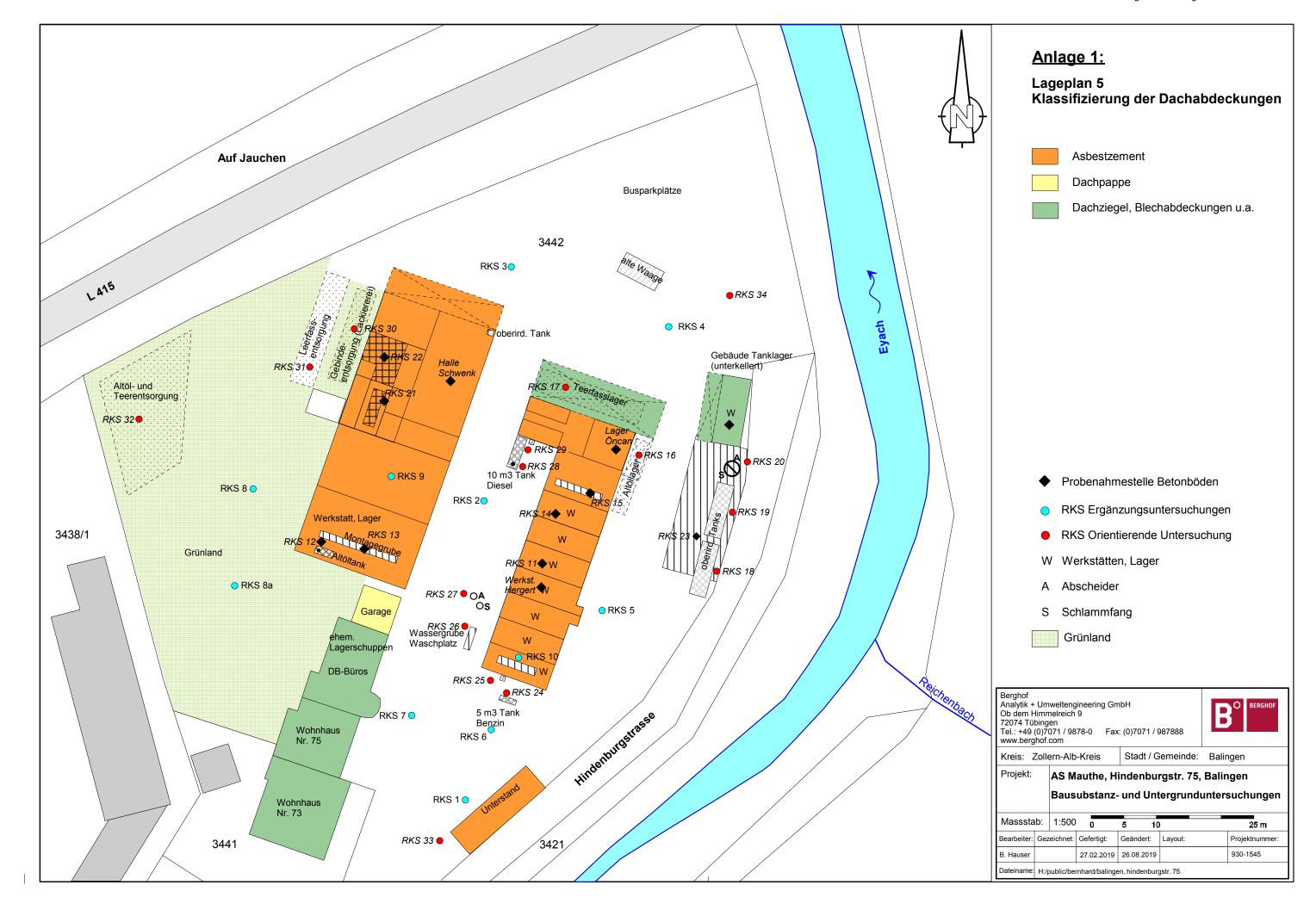
Lageplan 2
Beprobungspunkten der Betonböden und Wände

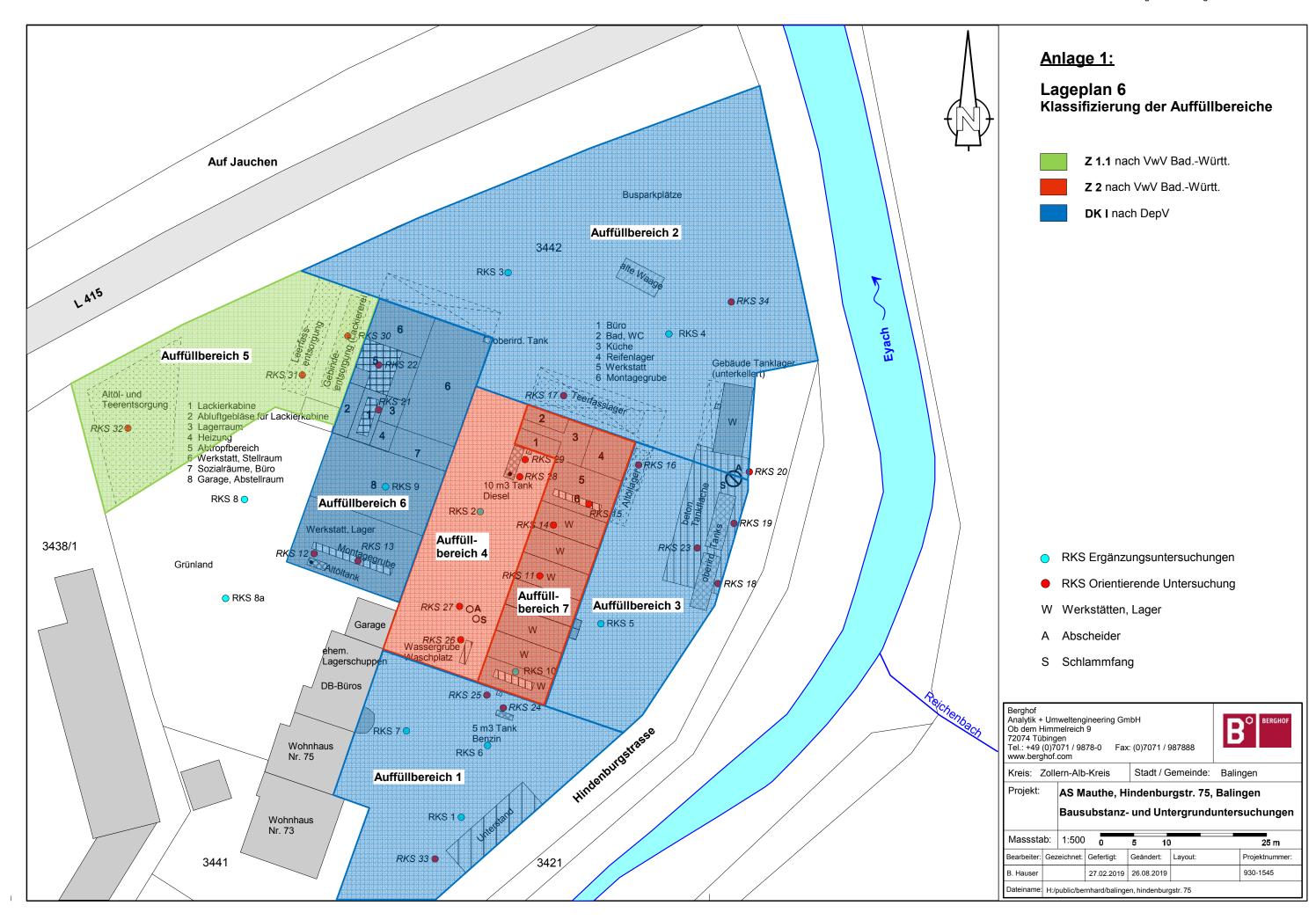

Lageplan 3
Klassifizierung der Betonböden nach RC-Erlass und MKW-Gehalt

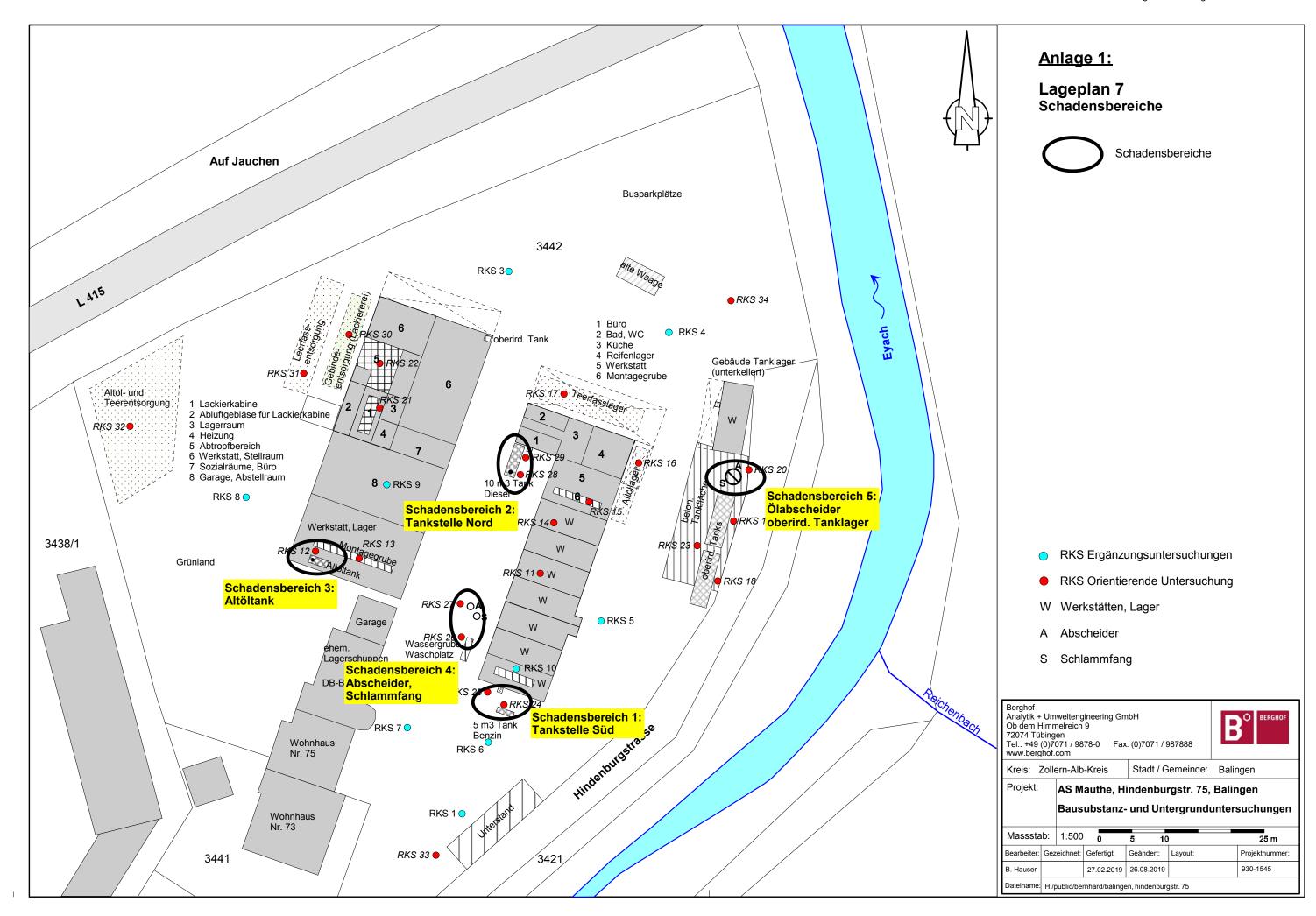

Lageplan 4
Klasifizierung der Asphaltflächen nach dem PAK-Gehalt


Lageplan 5
Klassifizierung der Dachabdeckungen


Lageplan 6
Klassifizierung der Auffüllbereiche


Lageplan 7
Schadensbereiche





Fotodokumentation

Fotodokumentation

Anlage 2

Orientierende Bausubstanz- und Untergrunduntersuchungen auf dem Grundstück Hindenburgstr. 75 in Balingen

Abbildung 1: Östliches Werkstattgebäude

Abbildung 2: Unterstand

Abbildung 3: Wohnhaus 75 mit Bürogebäude und Garage

Abbildung 4: Wohnhaus Nr. 75, rückwärtige Ansicht von Westen

Abbildung 5: Westliches Werkstattgebäude

Abbildung 6: Westliches Werkstattgebäude, rückwärtige Ansicht von Westen

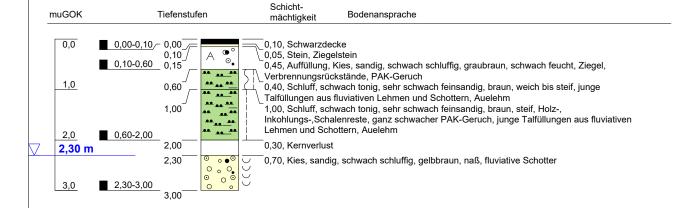
Abbildung 7: Gebäude Tanklager und Vorbau des östlichen Werkstattgebäudes

Abbildung 8: Schlammfang und Ölabscheider bei oberirdischem Tanklager Schadensbereich 5

Abbildung 9: Oberirdisches Tanklager

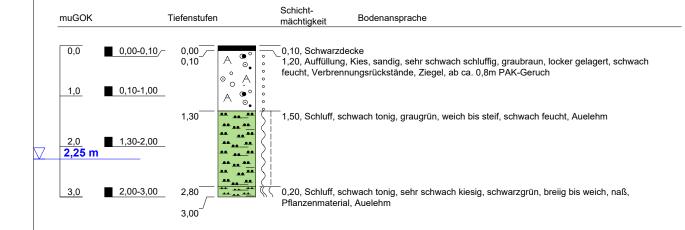
Unterirdischer Altöltank mit Montagegrube; Schadensbereich3 Abbildung 10:

Abbildung 11: Bereich der ehem. Tankstelle Süd; Schadensbereich 1

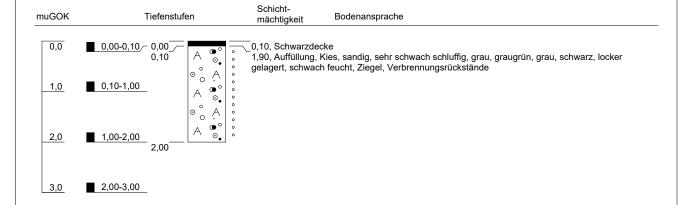

Abbildung 12: Waschplatz mit Schlammfang und Ölabscheider; Schadensbereich 4

Ehem. Tankstelle Nord; Schadensbereich 2 Abbildung 13:

Sondierprofile

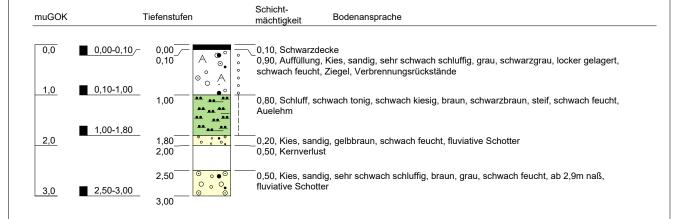

RKS 1Bearbeiter:HauserAnsatzhöhe:0,00 mRechtswert:0,0Datum:08.04.2019Endtiefe:3,00 mHochwert:0,0

Höhenmaßstab: 1:75

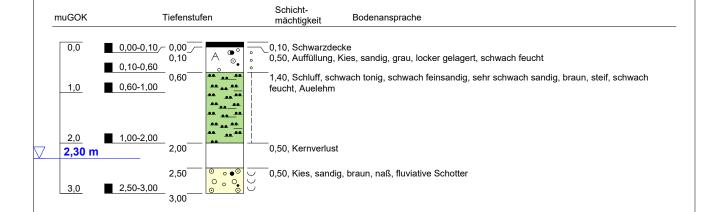

RKS₂

Bearbeiter:	Hauser	Ansatzhöhe:	0,00 m	Rechtswert:	0,0
Datum:	16.04.2019	Endtiefe:	3,00 m	Hochwert:	0,0

Projekt:	Balingen, Hindenburgstr. 75	BERGHOF
Auftraggeber:	Stadt Balingen	
Bohrfirma:	Berghof	


RKS 3 Bearbeiter: Hauser Ansatzhöhe: 0,00 m Rechtswert: 0,0 Datum: 16.04.2019 Endtiefe: 2,00 m Hochwert: 0,0

Höhenmaßstab: 1:75

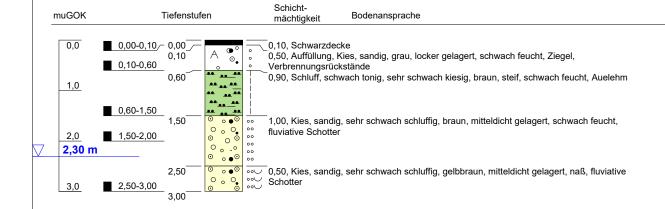

RKS 4

Bearbeiter:	Hauser	Ansatzhöhe:	0,00 m	Rechtswert:	0,0
Datum:	16.04.2019	Endtiefe:	3,00 m	Hochwert:	0,0

Projekt:	Balingen, Hindenburgstr. 75	DO	BERGHOF
Auftraggeber:	Stadt Balingen		
Bohrfirma:	Berghof		

RKS 5 Bearbeiter: Hauser Ansatzhöhe: 0,00 m Rechtswert: 0,0 Datum: 17.04.2019 Endtiefe: 3,00 m Hochwert: 0,0

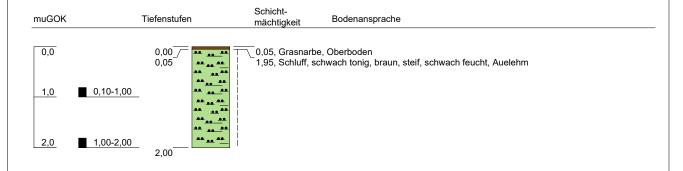
Höhenmaßstab: 1:75


RKS₆

Bearbeiter:	Hauser	Ansatzhöhe:	0,00 m	Rechtswert:	0,0
Datum:	17.04.2019	Endtiefe:	3,00 m	Hochwert:	0,0

muGOK	Т	iefenstufen	Schicht- mächtigkeit	Bodenansprache
0,0	0,00-0,10	0,00 0,10 A • ° °		, Kies, sandig, grau, locker gelagert, schwach feucht, Ziegel,
1,0	0,10-0,70	0,70	Verbrennungsrü 0,80, Schluff, sc	ickstande chwach tonig, dunkelgrau, steif, schwach feucht, Auelehm
2,0	0,70-1,50 1,50-2,00	1,50	0,50, Schluff, so feucht, Auelehn 0,50, Kernverlu	
3,0	2,50-2,90	2,50	0,40, Kies, sand	dig, gelbbraun, naß, fluviative Schotter dunkelgrau, naß, Lias

Projekt:	Balingen, Hindenburgstr. 75	DO	BERGHOF
Auftraggeber:	Stadt Balingen		
Bohrfirma:	Berghof		


RKS 7 Bearbeiter: Hauser Ansatzhöhe: 0,00 m Rechtswert: 0,0 Datum: 17.04.2019 Endtiefe: 3,00 m Hochwert: 0,0

Höhenmaßstab: 1:75

RKS 8

Bearbeiter:	Hauser	Ansatzhöhe:	0,00 m	Rechtswert:	0,0
Datum:	17.04.2019	Endtiefe:	2,00 m	Hochwert:	0,0

Höhenmaßstab: 1:75

Projekt: Balingen, Hindenburgstr. 75 Auftraggeber: Stadt Balingen Bohrfirma: Berghof

RKS 8a Bearbeiter: Hauser Ansatzhöhe: 0,00 m Rechtswert: 0,0 Datum: 22.05.2019 Endtiefe: 1,00 m Hochwert: 0,0

muGOK	Tiefenstufen	Schicht- mächtigkeit	Bodenansprache
0,0	0,00 / 0,05		Oberboden wach tonig, braun, steif, schwach feucht, Auelehm

Höhenmaßstab: 1:75

RKS 9

Bearbeiter:	Hauser	Ansatzhöhe:	0,00 m	Rechtswert:	0,0
Datum:	22.05.2019	Endtiefe:	4,00 m	Hochwert:	0,0

	muGOK	Tiefenstufen	Schicht- mächtigkeit	Bodenansprache
	0,0	0,00-0,18 0,00 0,15	0,15, Beton ∘ \ 0,03, Schwarzde	ecke
		■ 0,18-0,70 0,18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Kies, sandig, grau, locker gelagert, schwach feucht, Ziegel,
	1,0	0,70	0,30, Auffüllung,	Schluff, schwach tonig, Ziegel
	,-	1,00 A • • •	o,40, Auffüllung,	Kies, sandig, schluffig, grau, locker gelagert, schwach feucht
	_	■ 0,70-1,70 1,40 A → → → → → → → → → → → → → → → → → →		Schluff, schwach tonig, hellbraun, weich bis steif, schwach feucht
4	7 1,90 m	1,60 / A 1,70-2,00 1,70		Kies, sandig, schwach feucht, Glas Schluff, schwach kiesig, graugrün, steif, schwach feucht
		2,00-2,80	 	
	3,0	2,80		augrün, weich, feucht, Auelehm
		3,00-3,50	0,50, Schluff, un Auelehm	ten schwach kiesig, graugrün, schwarz, weich, feucht, Pfalnzenreste,
		3,50	∫ 0,40, Kies, sand	ig, schluffig, dunkelgrau bis grün, naß, fluviative Schotter
	4,0	3,50-3,90	0,10, Tonstein, o	dunkelgrau, trocken, Lias
	Magagereral	he entremmen		

Wasserprobe entnommen

Projekt:	Balingen, Hindenburgstr. 75	BERGHOF
Auftraggeber:	Stadt Balingen	
Bohrfirma:	Berghof	

RKS 10

Bearbeiter:	Hauser	Ansatzhöhe:	0,00 m	Rechtswert:	0,0
Datum:	22.05.2019	Endtiefe:	4,00 m	Hochwert:	0.0

	muGOK	Tiefenstufen	Schicht- mächtigkeit Bodenansprache
	0,0	0,00-0,32	0,32, Beton
	1,0	0,32-0,70 0,32 A O	0,38, Auffüllung, Kies, sandig, schluffig, locker gelagert, schwach feucht, Ziegel 2,30, Schluff, schwach tonig, z.T.schwach kiesig, schwach feinsandig, braun, weich bis steif, schwach feucht, Inkohlungsreste, Auelehm
<u> </u>	7 1,75 m 2,0 1	1,00-2,00	
	3,0	3,00	0,40, Schluff, schwach tonig, schwach sandig, braun, weich, feucht, Auelehm
	4,0	3,40 3,50 3,90 4,00	0,10, Sand, braun, naß 0,40, Kies, sandig, sehr schwach schluffig, hellbraun, naß, fluviative Schotter 0,10, Tonstein, dunkelgrau, halbfest, trocken, Lias

Wasserprobe entnommen

Höhenmaßstab: 1:75

RKS 11

Bearbeiter:	Hauser	Ansatzhöhe:	0,00 m	Rechtswert:	0,0
Datum:	08.04.2019	Endtiefe:	2,00 m	Hochwert:	0,0

Höhenmaßstab: 1:75

Projekt: Balingen, Hindenburgstr. 75 Stadt Balingen Auftraggeber: Bohrfirma: Berghof

Analysenbefunde

00102265-02_(AC)

08.05.2019

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a • D-09131 Chemnitz

Berghof Analytik + Umweltengineering GmbH Herr Bernhard Hauser

Ob dem Himmelreich 9

72074 Tübingen

Nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Auftragsdaten	
Betreff:	Projekt: Hindenburgstraße 75 in Balingen (930-1545)
Eingangsdatum:	17.04.2019
Bearbeitungszeitraum:	17.04.2019 - 08.05.2019
Probennehmer:	Auftraggeber

Wände Wohnhaus 75				Bauschutt
102265/930/01			Grenz-/ Anforderungswert	
Parameter	Einheit	Ergebnis		Methode
Bauschutt BW (Dihlmann-Erla	ıss)			
Farbe	<u>-</u>	grau		_*
Trockenrückstand (105 °C)	% OS	98,6		DIN EN 14346 2007-03
Kohlenwasserstoffe, C10-C40	mg/kg TS	< 50		DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50		DIN EN 14039 2005-01
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1		DIN 38414-17 (S 17) 2017-01
PAK (EPA)				
Naphthalin	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Fluoren	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Anthracen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Pyren	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Chrysen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Benzo(ghi)perylen	mg/kg TS	< 0,05		DIN ISO 18287 2006-05
Summe	mg/kg TS	n.b.		berechnet

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a 09131 Chemnitz Deutschland Tel. +49 371 334356-0 Fax.+49 371 334356-10 analytik.chemnitz@berghof.com www.berghof-analytik.com

Polychlorierte Biphenyle (PC	B6)		
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet
Eluatherstellung	-	x	DIN EN 12457-4 2003-01
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
pH-Wert / bei 20°C	-	11,0	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	2080	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	10,7	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	1180	DIN EN ISO 10304-1 (D 20) 2009-07
Arsen	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	32	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	6,8	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02
Nachuntersuchung	-	x	-
Phenolindex nach Destillation	μg/L	< 10	Dest. DIN 38409-H16-3; Messung DIN EN ISO 14402 (H 37) 1984-06/1999-12

Chemnitz, den 08.05.2019

Mario Thielemann

Laborleiter

Legende: n.n. nicht nachweisbar (M) Mittelwert n.b. nicht bestimmbar (Zahl) Einzelwert

n.d. nicht durchgeführt x Untersuchung durchgeführt

< x,x kleiner als Bestimmungsgrenze

Fett gedruckte Prüfverfahren überschreiten (bzw. unterschreiten) die zulässigen Grenz- oder Anforderungswerte!

mit * markierte Prüfverfahren sind nicht akkreditiert

mit 1 markierte Prüfverfahren wurden am Standort Tübingen bearbeitet

mit + markierte Prüfverfahren wurden im Unterauftrag bearbeitet, der Auftragnehmer ist für das Verfahren akkreditiert

Die Prüfergebnisse beziehen sich ausschließlich auf die angelieferten Prüfgegenstände. Die im Verfahren angegebene Messunsicherheit wird eingehalten. Die Veröffentlichung und Vervielfältigung von Prüfberichten und Gutachten sowie deren auszugsweise Veröffentlichung bedarf der schriftlichen Zustimmung. (DIN EN ISO/IEC 17025)

00102421-01_(AC)

02.05.2019

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a • D-09131 Chemnitz

Berghof Analytik + Umweltengineering GmbH Herr Bernhard Hauser

Ob dem Himmelreich 9

72074 Tübingen

Nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Auftragsdaten	
Betreff:	Projekt: Hindenburgstraße 75, Balingen (930-1545)
Eingangsdatum:	24.04.2019
Bearbeitungszeitraum:	24.04.2019 - 02.05.2019
Probennehmer:	Auftraggeber

Wände westlicher Werkstattbereich				
102421/930/01			Grenz-/ Anforderungswert	
Parameter	Einheit	Ergebnis	Methode	

Bauschutt BW (Dihlmann-Erl	ass)		
Farbe	-	grau	- *
Trockenrückstand (105 °C)	% OS	99,4	DIN EN 14346 2007-03
Kohlenwasserstoffe, C10-C40	mg/kg TS	62	DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01
PAK (EPA)			
Naphthalin	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Fluoren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	0,08	DIN ISO 18287 2006-05
Anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	0,12	DIN ISO 18287 2006-05
Pyren	mg/kg TS	0,08	DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Chrysen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(ghi)perylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Summe	mg/kg TS	0,28	berechnet

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a 09131 Chemnitz Deutschland Tel. +49 371 334356-0 Fax.+49 371 334356-10 analytik.chemnitz@berghof.com www.berghof-analytik.com

	- 0)		
Polychlorierte Biphenyle (PC	B6)		
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet
Eluatherstellung	-	X	DIN EN 12457-4 2003-01
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
pH-Wert / bei 20°C	-	9,86	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	643	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	5,30	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	263	DIN EN ISO 10304-1 (D 20) 2009-07
Phenolindex	μg/L	< 10,0	DIN EN ISO 14402 (H 37) 1999-12
Arsen	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	16	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	2,9	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	2,3	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02

Wände östlicher Werkstattbe	reich		Bausch	utt
102421/930/02			Grenz-/ Anforderungswert	
Parameter	Einheit	Ergebnis	Methode	
Bauschutt BW (Dihlmann-Erl	ass)			
Farbe	<u>-</u>	grau	_*	
Trockenrückstand (105 °C)	% OS	99,2	DIN EN 14346 2007-03	
Kohlenwasserstoffe, C10-C40	mg/kg TS	< 50	DIN EN 14039 2005-01	
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01	
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01	
PAK (EPA)				
Naphthalin	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Acenaphthylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Acenaphthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Fluoren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Phenanthren	mg/kg TS	0,10	DIN ISO 18287 2006-05	
Anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Fluoranthen	mg/kg TS	0,06	DIN ISO 18287 2006-05	
Pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benz(a)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Chrysen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benzo(b)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benzo(k)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benzo(a)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Dibenz(a,h)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benzo(ghi)perylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Summe	mg/kg TS	0,16	berechnet	
Debablaciente Binkennde (DO	DC)			
Polychlorierte Biphenyle (PC				
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05	
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05	
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05	
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05	
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05	
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05	
Summe	mg/kg TS	n.b.	berechnet	
Eluatherstellung	-	x	DIN EN 12457-4 2003-01	
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10	
pH-Wert / bei 20°C	-	11,1	DIN 38404-5 (C 5) 2009-07	
elektr. Leitfähigkeit bei 25°C	μS/cm	882	DIN EN 27888 (C8) 1993-11	
Chlorid	mg/L	8,57	DIN EN ISO 10304-1 (D 20) 2009-07	
Sulfat	mg/L	227	DIN EN ISO 10304-1 (D 20) 2009-07	
Phenolindex	μg/L	10,0	DIN EN ISO 14402 (H 37) 1999-12	
Arsen	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02	
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02	
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02	
Chrom, gesamt	μg/L	5,3	DIN EN ISO 17294-2 (E 29) 2005-02	
Kupfer	μg/L	3,7	DIN EN ISO 17294-2 (E 29) 2005-02	
Nickel	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02	
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08	
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02	

Chemnitz, den 02.05.2019

Mario Thielemann Laborleiter

Legende: nicht nachweisbar n.n.

n.b.

(M) Mittelwert nicht bestimmbar (Zahl) Einzelwert

Untersuchung durchgeführt n.d. nicht durchgeführt

< x,x kleiner als Bestimmungsgrenze

Fett gedruckte Prüfverfahren überschreiten (bzw. unterschreiten) die zulässigen Grenz- oder Anforderungswerte!

mit * markierte Prüfverfahren sind nicht akkreditiert

mit 1 markierte Prüfverfahren wurden am Standort Tübingen bearbeitet

mit + markierte Prüfverfahren wurden im Unterauftrag bearbeitet, der Auftragnehmer ist für das Verfahren akkreditiert

Die Prüfergebnisse beziehen sich ausschließlich auf die angelieferten Prüfgegenstände. Die im Verfahren angegebene Messunsicherheit wird eingehalten. Die Veröffentlichung und Vervielfältigung von Prüfberichten und Gutachten sowie deren auszugsweise Veröffentlichung bedarf der schriftlichen Zustimmung. (DIN EN ISO/IEC 17025)

00102268-02_(AC)

08.05.2019

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a • D-09131 Chemnitz

Berghof Analytik + Umweltengineering GmbH Herr Bernhard Hauser

Ob dem Himmelreich 9

72074 Tübingen

Nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Auftragsdaten	
Betreff:	Projekt: Hindenburgstraße 75 in Balingen (930-1545)
Eingangsdatum:	17.04.2019
Bearbeitungszeitraum:	17.04.2019 - 08.05.2019
Probennehmer:	Auftraggeber

Betonboden westlicher Werk	stattbereich		Baus	chut
102268/930/01			Grenz-/ Anforderungswert	
Parameter	Einheit	Ergebnis	Methode	
Bauschutt BW (Dihlmann-Erla	ass)			
Farbe	-	grau	_*	
Trockenrückstand (105 °C)	% OS	96,5	DIN EN 14346 2007-03	
Kohlenwasserstoffe, C10-C40	mg/kg TS	150	DIN EN 14039 2005-01	
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01	
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01	
PAK (EPA)				
Naphthalin	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Acenaphthylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Acenaphthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Fluoren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Phenanthren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benz(a)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Chrysen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benzo(b)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benzo(k)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benzo(a)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Dibenz(a,h)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Benzo(ghi)perylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05	
Summe	mg/kg TS	n.b.	berechnet	

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a 09131 Chemnitz Deutschland Tel. +49 371 334356-0 Fax.+49 371 334356-10 analytik.chemnitz@berghof.com www.berghof-analytik.com

Polychlorierte Biphenyle (PC	B6)		
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet
Eluatherstellung	-	x	DIN EN 12457-4 2003-01
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
oH-Wert / bei 20°C	-	12,1	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	3260	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	< 10,0	DIN EN ISO 10304-1 (D 20) 2009-07
Arsen	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
3lei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	4,6	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02
Nachuntersuchung	-	x	-
Phenolindex nach Destillation	μg/L	< 10	Dest. DIN 38409-H16-3; Messung DIN E ISO 14402 (H 37) 1984-06/1999-12

Betonboden östlicher Werkst	tattbereich		Bauschutt
102268/930/02			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
Bauschutt BW (Dihlmann-Erl	ass)		
Farbe	-	grau	.*
Trockenrückstand (105 °C)	% OS	97,1	DIN EN 14346 2007-03
Kohlenwasserstoffe, C10-C40	mg/kg TS	690	DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	110	DIN EN 14039 2005-01
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01
PAK (EPA)			
Naphthalin	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Fluoren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	0,08	DIN ISO 18287 2006-05
Anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	0,15	DIN ISO 18287 2006-05
Pyren	mg/kg TS	0,12	DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Chrysen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(ghi)perylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Summe	mg/kg TS	0,35	berechnet
Polychlorierte Biphenyle (PC		< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	0 0		DIN EN 15308 2008-05
PCB 180	mg/kg TS mg/kg TS	< 0,02 < 0,02	
Summe	mg/kg TS	n.b.	DIN EN 15308 2008-05 berechnet
Closeth a net allows a			DIN FN 40457 4 0000 04
Eluatherstellung Geruch, qualitativ	-	x ohne	DIN EN 12457-4 2003-01 DIN EN 1622 (B 3) Anh. C 2006-10
pH-Wert / bei 20°C	-	12,3	• •
•	- uC/om		DIN 38404-5 (C 5) 2009-07 DIN EN 27888 (C8) 1993-11
elektr. Leitfähigkeit bei 25°C	μS/cm	4540	* *
Chlorid	mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	< 10,0	DIN EN ISO 10304-1 (D 20) 2009-07
Phenolindex	μg/L	81,0	DIN EN ISO 17304 3 (5 30) 3005 03
Arsen	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	5,6	DIN EN ISO 17294-2 (E 29) 2005-02
Chromacocart	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	2,8	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	3,0	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02
Nachuntersuchung	-	х	1
Phenolindex nach Destillation	μg/L	70	Dest. DIN 38409-H16-3; Messung DIN EN ISO 14402 (H 37) 1984-06/1999-12
	-		100 17702 (1137) 1304-0011335-12

Chemnitz, den 08.05.2019

i.V.

Mario Thielemann Laborleiter

Legende: n.n. nicht nachweisbar n.b. nicht bestimmbar

nicht nachweisbar (M) Mittelwert nicht bestimmbar (Zahl) Einzelwert

n.d. nicht durchgeführt x Untersuchung durchgeführt

< x,x kleiner als Bestimmungsgrenze

Fett gedruckte Prüfverfahren überschreiten (bzw. unterschreiten) die zulässigen Grenz- oder Anforderungswerte!

mit * markierte Prüfverfahren sind nicht akkreditiert

mit 1 markierte Prüfverfahren wurden am Standort Tübingen bearbeitet

mit + markierte Prüfverfahren wurden im Unterauftrag bearbeitet, der Auftragnehmer ist für das Verfahren akkreditiert

Die Prüfergebnisse beziehen sich ausschließlich auf die angelieferten Prüfgegenstände. Die im Verfahren angegebene Messunsicherheit wird eingehalten. Die Veröffentlichung und Vervielfältigung von Prüfberichten und Gutachten sowie deren auszugsweise Veröffentlichung bedarf der schriftlichen Zustimmung. (DIN EN ISO/IEC 17025)

00102267-01_(AC)

25.04.2019

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a • D-09131 Chemnitz

Berghof Analytik + Umweltengineering GmbH Herr Bernhard Hauser

Ob dem Himmelreich 9

72074 Tübingen

Nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Auftragsdaten	
Betreff:	Projekt: Hindenburgstraße 75 in Balingen (930-1545)
Eingangsdatum:	17.04.2019
Bearbeitungszeitraum:	17.04.2019 - 25.04.2019
Probennehmer:	Auftraggeber

Werkstatt Hergert			Bauschutt
102267/930/01			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40	% OS mg/kg TS	98,6 205	DIN EN 14346 2007-03 DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01

Gebäude Tanklager Keller			Bausch	utt
102267/930/02			Grenz-/ Anforderungswert	
Parameter	Einheit	Ergebnis	Methode	
Trockenrückstand (105 °C)	% OS	98,2	DIN EN 14346 2007-03	
Kohlenwasserstoffe, C10-C40	mg/kg TS	58	DIN EN 14039 2005-01	
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01	

Halle Schwenk			Bauschutt
102267/930/03			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40	% OS	96,6 120	DIN EN 14346 2007-03 DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS mg/kg TS	< 50	DIN EN 14039 2005-01

RKS 15					Bauschutt
102267/930/04			Grenz-/ Anforderungswert		
Parameter	Einheit	Ergebnis		Methode	
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40 Kohlenwasserstoffe, C10-C22	% OS mg/kg TS mg/kg TS	97,2 681 95		DIN EN 14346 2007-03 DIN EN 14039 2005-01 DIN EN 14039 2005-01	
RKS 11					Bauschutt
102267/930/05			Grenz-/ Anforderungswert		
Parameter	Einheit	Ergebnis		Methode	
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40 Kohlenwasserstoffe, C10-C22	% OS mg/kg TS mg/kg TS	96,6 899 157		DIN EN 14346 2007-03 DIN EN 14039 2005-01 DIN EN 14039 2005-01	
RKS 12					Bauschutt
102267/930/06			Grenz-/ Anforderungswert		
Parameter	Einheit	Ergebnis		Methode	
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40 Kohlenwasserstoffe, C10-C22	% OS mg/kg TS mg/kg TS	95,4 < 50 < 50		DIN EN 14346 2007-03 DIN EN 14039 2005-01 DIN EN 14039 2005-01	
RKS 13					Bauschutt
102267/930/07			Grenz-/ Anforderungswert		
Parameter	Einheit	Ergebnis		Methode	
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40 Kohlenwasserstoffe, C10-C22	% OS mg/kg TS mg/kg TS	95,1 1110 225		DIN EN 14346 2007-03 DIN EN 14039 2005-01 DIN EN 14039 2005-01	
RKS 14					Bauschutt
102267/930/08			Grenz-/ Anforderungswert		
Parameter	Einheit	Ergebnis		Methode	
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40 Kohlenwasserstoffe, C10-C22	% OS mg/kg TS mg/kg TS	97,2 2519 362		DIN EN 14346 2007-03 DIN EN 14039 2005-01 DIN EN 14039 2005-01	
RKS 21					Bauschutt
102267/930/09			Grenz-/ Anforderungswert		
Parameter	Einheit	Ergebnis		Methode	
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40 Kohlenwasserstoffe, C10-C22	% OS mg/kg TS mg/kg TS	95,4 < 50 < 50		DIN EN 14346 2007-03 DIN EN 14039 2005-01 DIN EN 14039 2005-01	

RKS 22			Bauschutt
102267/930/10			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
Trockenrückstand (105 °C)	% OS	94,4	DIN EN 14346 2007-03
Kohlenwasserstoffe, C10-C40 Kohlenwasserstoffe, C10-C22	mg/kg TS mg/kg TS	< 50 < 50	DIN EN 14039 2005-01 DIN EN 14039 2005-01

RKS 23			Bauschutt
102267/930/11			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40	% OS mg/kg TS	95,3 665	DIN EN 14346 2007-03 DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	504	DIN EN 14039 2005-01

Lager Öncan			Bauschutt
102267/930/12			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
Trockenrückstand (105 °C) Kohlenwasserstoffe, C10-C40	% OS mg/kg TS	94,8 1038	DIN EN 14346 2007-03 DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	137	DIN EN 14039 2005-01

Chemnitz, den 25.04.2019

i V

Mario Thielemann Laborleiter

Legende:	n.n.	nicht nachweisbar	(M)
3	n.b.	nicht bestimmbar	(Zahl)
	11.6.	mont bootimmou	(<u>-</u> aiii)

n.d. nicht durchgeführt x Untersuchung durchgeführt

< x,x kleiner als Bestimmungsgrenze

Fett gedruckte Prüfverfahren überschreiten (bzw. unterschreiten) die zulässigen Grenz- oder Anforderungswerte!

mit * markierte Prüfverfahren sind nicht akkreditiert

mit 1 markierte Prüfverfahren wurden am Standort Tübingen bearbeitet

mit + markierte Prüfverfahren wurden im Unterauftrag bearbeitet, der Auftragnehmer ist für das Verfahren akkreditiert

Die Prüfergebnisse beziehen sich ausschließlich auf die angelieferten Prüfgegenstände. Die im Verfahren angegebene Messunsicherheit wird eingehalten. Die Veröffentlichung und Vervielfältigung von Prüfberichten und Gutachten sowie deren auszugsweise Veröffentlichung bedarf der schriftlichen Zustimmung. (DIN EN ISO/IEC 17025)

Mittelwert

Einzelwert

00102266-01_(AC)

24.04.2019

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a • D-09131 Chemnitz

Berghof Analytik + Umweltengineering GmbH Herr Bernhard Hauser

Ob dem Himmelreich 9

72074 Tübingen

Auftragsdaten	
Betreff:	Projekt: Hindenburgstraße 75 in Balingen (930-1545)
Eingangsdatum:	17.04.2019
Bearbeitungszeitraum:	17.04.2019 - 24.04.2019
Probennehmer:	Auftraggeber

Wohnhaus 75: OG Estrich			Bauschutt
102266/930/01			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
Trockenrückstand (105 °C)	% OS	98,8	DIN EN 14346 2007-03
PAK (EPA)			
Naphthalin	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Fluoren	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	10,6	DIN ISO 18287 2006-05
Anthracen	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	3,14	DIN ISO 18287 2006-05
Pyren	mg/kg TS	1,91	DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Chrysen	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	0,56	DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Benzo(ghi)perylen	mg/kg TS	< 0,50	DIN ISO 18287 2006-05
Summe	mg/kg TS	16,2	berechnet

Schwarzdecke

DIN EN 15527 2008-09

DIN EN 15527 2008-09

DIN EN 15527 2008-09

DIN EN 15527 2008-09

Tanklager: Fugenmaterial Zapfsäule

Indeno(1,2,3-cd)pyren

Dibenz(a,h)anthracen

Benzo(ghi)perylen

Summe

Königswasseraufschluss	-	Х	DIN EN 13657 2003-01
Arsen	mg/kg TS	5,6	DIN EN ISO 11885 (E 22) 2009-09
Blei	mg/kg TS	3,4	DIN EN ISO 11885 (E 22) 2009-09
Cadmium	mg/kg TS	< 0,2	DIN EN ISO 11885 (E 22) 2009-09
Chrom, gesamt	mg/kg TS	11,8	DIN EN ISO 11885 (E 22) 2009-09
Kupfer	mg/kg TS	10,0	DIN EN ISO 11885 (E 22) 2009-09
Nickel	mg/kg TS	14,5	DIN EN ISO 11885 (E 22) 2009-09
Quecksilber	mg/kg TS	< 0,05	DIN EN ISO 12846 2012-08
Zink	mg/kg TS	33,0	DIN EN ISO 11885 (E 22) 2009-09

Garage nördlich Wohnhaus 75: Dachpappe				
102266/930/02			Grenz-/ Anforderungswert	
Parameter	Einheit	Ergebnis	Methode	

PAK (EPA)			
Naphthalin	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Fluoren	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	0,63	DIN EN 15527 2008-09
Anthracen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Fluoranthen	mg/kg OS	0,95	DIN EN 15527 2008-09
Pyren	mg/kg OS	6,95	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Chrysen	mg/kg OS	2,20	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	0,96	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	0,64	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	0,96	DIN EN 15527 2008-09
Indeno(1,2,3-cd)pyren	mg/kg OS	0,59	DIN EN 15527 2008-09
Dibenz(a,h)anthracen	mg/kg OS	0,59	DIN EN 15527 2008-09
Benzo(ghi)perylen	mg/kg OS	1,49	DIN EN 15527 2008-09
Summe	mg/kg OS	16,0	DIN EN 15527 2008-09

rankager: r agenmateria	ii Lapioaale		301111412433113
102266/930/03			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
PAK (EPA)			
Naphthalin	mg/kg OS	0,59	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	0,89	DIN EN 15527 2008-09
Fluoren	mg/kg OS	2,38	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	4,46	DIN EN 15527 2008-09
Anthracen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Fluoranthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Pyren	mg/kg OS	1,49	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Chrysen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	< 0,50	DIN EN 15527 2008-09

< 0,50

< 0,50

< 0,50

9,81

mg/kg OS

mg/kg OS

mg/kg OS

mg/kg OS

Chemnitz, den 24.04.2019

i.V

Mario Thielemann Laborleiter

Legende: n.n. nicht nachweisbar

n.b.

nicht nachweisbar (M) Mittelwert nicht bestimmbar (Zahl) Einzelwert

n.d. nicht durchgeführt x Untersuchung durchgeführt

< x,x kleiner als Bestimmungsgrenze

Fett gedruckte Prüfverfahren überschreiten (bzw. unterschreiten) die zulässigen Grenz- oder Anforderungswerte!

mit * markierte Prüfverfahren sind nicht akkreditiert

mit 1 markierte Prüfverfahren wurden am Standort Tübingen bearbeitet

mit + markierte Prüfverfahren wurden im Unterauftrag bearbeitet, der Auftragnehmer ist für das Verfahren akkreditiert

00102415-01_(AC)

29.04.2019

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a • D-09131 Chemnitz

Berghof Analytik + Umweltengineering GmbH Herr Bernhard Hauser

Ob dem Himmelreich 9

72074 Tübingen

Auftragsdaten	
Betreff:	Projekt: Hindenburgstraße 75 in Balingen (930-1545)
Eingangsdatum:	24.04.2019
Bearbeitungszeitraum:	24.04.2019 - 29.04.2019
Probennehmer:	Auftraggeber

RKS 1				;	Schwarzdecke
102415/930/01			Grenz-/ Anforderungswert		
Parameter	Einheit	Ergebnis		Methode	

PAK (EPA)			
Naphthalin	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Fluoren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Chrysen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Indeno(1,2,3-cd)pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Dibenz(a,h)anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(ghi)perylen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Summe	mg/kg OS	n.b.	DIN EN 15527 2008-09

DIN EN 15527 2008-09

RKS 2			Schwarzdec
102415/930/02			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
PAK (EPA)			
Naphthalin	mg/kg OS	44,2	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	12,0	DIN EN 15527 2008-09
Fluoren	mg/kg OS	39,3	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	118	DIN EN 15527 2008-09
Anthracen	mg/kg OS	34,3	DIN EN 15527 2008-09
luoranthen	mg/kg OS	61,9	DIN EN 15527 2008-09
Pyren	mg/kg OS	37,1	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	19,3	DIN EN 15527 2008-09
Chrysen	mg/kg OS	17,9	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	23,2	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	15,2	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	10,9	DIN EN 15527 2008-09
ndeno(1,2,3-cd)pyren	mg/kg OS	3,31	DIN EN 15527 2008-09
Dibenz(a,h)anthracen	mg/kg OS	1,17	DIN EN 15527 2008-09
Benzo(ghi)perylen	mg/kg OS	3,12	DIN EN 15527 2008-09
Summe	mg/kg OS	441	DIN EN 15527 2008-09
102415/930/03			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
PAK (EPA)			
Naphthalin	mg/kg OS	0,63	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Fluoren	mg/kg OS	0,63	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	1,74	DIN EN 15527 2008-09
Anthracen	mg/kg OS	0,63	DIN EN 15527 2008-09
Fluoranthen	mg/kg OS	0,95	DIN EN 15527 2008-09
Pyren	mg/kg OS	0,95	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	0,84	DIN EN 15527 2008-09
Chrysen	mg/kg OS	0,84	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	< 0,50	DIN EN 15527 2008-09
ndeno(1,2,3-cd)pyren	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Dibenz(a,h)anthracen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Benzo(ghi)perylen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Summo	mg/kg OS	7.21	DIN EN 15527 2000-00

7,21

mg/kg OS

Summe

DIN EN 15527 2008-09

RKS 4			Schwarzdecke
102415/930/04			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
PAK (EPA)			
Naphthalin	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Fluoren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Chrysen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Indeno(1,2,3-cd)pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Dibenz(a,h)anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(ghi)perylen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Summe	mg/kg OS	n.b.	DIN EN 15527 2008-09
RKS 5			Schwarzdecke
102415/930/05	-,		Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
PAK (EPA)			
Naphthalin	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Fluoren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Chrysen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Indeno(1,2,3-cd)pyren	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Dibenz(a,h)anthracen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Benzo(ghi)perylen	mg/kg OS	< 0,05	DIN EN 15527 2008-09
Summe	mg/kg OS	n h	DIN EN 15527 2008-09

n.b.

mg/kg OS

Summe

DIN EN 15527 2008-09

RKS 6			Schwarzdecke
102415/930/06			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
PAK (EPA)			
Naphthalin	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Fluoren	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	1,63	DIN EN 15527 2008-09
Anthracen	mg/kg OS	0,82	DIN EN 15527 2008-09
Fluoranthen	mg/kg OS	4,73	DIN EN 15527 2008-09
Pyren	mg/kg OS	4,24	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	3,57	DIN EN 15527 2008-09
Chrysen	mg/kg OS	3,57	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	6,76	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	4,44	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	3,17	DIN EN 15527 2008-09
Indeno(1,2,3-cd)pyren	mg/kg OS	1,27	DIN EN 15527 2008-09
Dibenz(a,h)anthracen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Benzo(ghi)perylen	mg/kg OS	1,27	DIN EN 15527 2008-09
Summe	mg/kg OS	35,5	DIN EN 15527 2008-09

RKS 7			Schwarzdecke
102415/930/07			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
PAK (EPA)			
Naphthalin	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthylen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Acenaphthen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Fluoren	mg/kg OS	1,68	DIN EN 15527 2008-09
Phenanthren	mg/kg OS	11,0	DIN EN 15527 2008-09
Anthracen	mg/kg OS	5,05	DIN EN 15527 2008-09
Fluoranthen	mg/kg OS	15,5	DIN EN 15527 2008-09
Pyren	mg/kg OS	12,2	DIN EN 15527 2008-09
Benz(a)anthracen	mg/kg OS	6,67	DIN EN 15527 2008-09
Chrysen	mg/kg OS	13,5	DIN EN 15527 2008-09
Benzo(b)fluoranthen	mg/kg OS	10,6	DIN EN 15527 2008-09
Benzo(k)fluoranthen	mg/kg OS	6,80	DIN EN 15527 2008-09
Benzo(a)pyren	mg/kg OS	5,20	DIN EN 15527 2008-09
Indeno(1,2,3-cd)pyren	mg/kg OS	1,85	DIN EN 15527 2008-09
Dibenz(a,h)anthracen	mg/kg OS	< 0,50	DIN EN 15527 2008-09
Benzo(ghi)perylen	mg/kg OS	2,26	DIN EN 15527 2008-09
. .	0 0		

92,3

Chemnitz, den 29.04.2019

Mario Thielemann Laborleiter

Summe

mg/kg OS

Legende: n.n. nicht nachweisbar (M) Mittelwert n.b. nicht bestimmbar (Zahl) Einzelwert

n.d. nicht durchgeführt x Untersuchung durchgeführt

< x,x kleiner als Bestimmungsgrenze

Fett gedruckte Prüfverfahren überschreiten (bzw. unterschreiten) die zulässigen Grenz- oder Anforderungswerte!

mit * markierte Prüfverfahren sind nicht akkreditiert

mit 1 markierte Prüfverfahren wurden am Standort Tübingen bearbeitet

mit + markierte Prüfverfahren wurden im Unterauftrag bearbeitet, der Auftragnehmer ist für das Verfahren akkreditiert

Competenza GmbH • Flößaustraße 24a • 90763 Fürth

Berghof Umweltengineering Herrn Schatz Ob dem Himmelreich 9

72074 Tübingen

Durch die DAkkS nach DIN EN ISO/IEC 17025: 2005 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Prüfbericht

über die Prüfung auf Anorganische Fasern in Materialproben gemäß VDI-Richtlinie 3866-5 (2017-06)

Bericht Nr.: NL68317

Objekt¹: Hindenburgstraße in Balingen

Probenahmedatum¹: 08.04.2019

Probenahme durch¹: Berghof Umweltengineering

Probeneingang: 17.04.2019

Analysendatum: 22.04.2019 - 24.04.2019

Auswertung durch: Competenza GmbH, Fürth: Herrn Ulrich Eder

Analysenmethode: Rasterelektronenmikroskopie mit gekoppelter

energiedispersiver Röntgenmikroanalyse (REM/EDXA)

Dieser Prüfbericht umfasst: 3 Seiten

Die genannten Ergebnisse beziehen sich ausschließlich auf die untersuchte Probe. Der Bericht darf ohne die schriftliche Genehmigung der Competenza GmbH nicht teilweise vervielfältigt oder weitergegeben werden.

Prüfbericht NL68317 Seite 1 von 3 Seiten

¹⁾ Angabe des Auftraggebers, nicht Bestandteil der Akkreditierung der Competenza GmbH.

Ergebnis der Prüfung:

Labor- nummer:	Proben- typ:	Probenbezeichnung:	Analysenergebnis:	Gehalt:	WHO-Fasern ² nachweisbar:
NL68317.1	MP	Garage Herget abgeängte Decke	Kein Asbest nachgewiesen KMF nachgewiesen	Asbest: - KMF: >50%	Asbest: - KMF: ja
NL68317.2	MPA	Wohnhaus Hindenburgstraße 75 Bodenbelagsplatte	Chrysotil nachgewiesen	ca. 5% bis 20%	ja
NL68317.3	MPEH	Werkstätten, RKS 21 Beschichtung Beton	Kein Asbest nachgewiesen	-	-

 $^{^2)}$ Definition WHO-Faser: L > 5 µm, D < 3 µm, L:D > 3:1

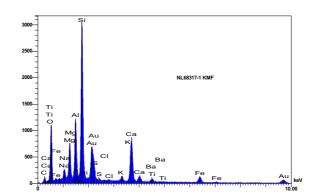
MP: Materialprobe - Prüfauftrag zur Untersuchung auf Asbest und Künstliche Mineralfasern (KMF) nach VDI 3866-5:2017-06, Nachweisgrenze 1%

MPA: Materialprobe - Prüfauftrag zur Untersuchung auf Asbest nach VDI 3866-5:2017-06, Nachweisgrenze 1%

MPEH: Materialprobe - Prüfauftrag zur qualitativen Untersuchung auf Asbest nach VDI 3866-5:2017-06 mit erweiterter Probenvorbereitung (Heißveraschung), Nachweisgrenze 0,1 - 1%

Fürth, den 24.04.2019

Stefan Lausen


Anlage: Abbildungen und Elementspektren

Prüfbericht NL68317 Seite 2 von 3 Seiten

Competenza

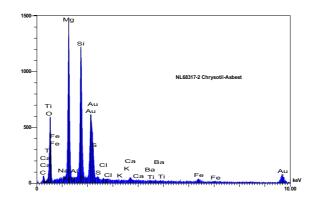

Abbildung und Elementspektrum: KMF Fundstelle NL68317.1

Abbildung und Elementspektrum: Chrysotil-Asbest Fundstelle NL68317.2

00102414-01_(AC)

02.05.2019

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a • D-09131 Chemnitz

Berghof Analytik + Umweltengineering GmbH Herr Bernhard Hauser

Ob dem Himmelreich 9

72074 Tübingen

Auftragsdaten	
Betreff:	Projekt: Hindenburgstraße 75 in Balingen (930-1545)
Eingangsdatum:	24.04.2019
Bearbeitungszeitraum:	24.04.2019 - 30.04.2019
Probennehmer:	Auftraggeber

Auffüllbereich 1					Boden
102414/930/01			Grenz-/ Anforderungswert		
Parameter	Einheit	Ergebnis		Methode	

VwV Boden Baden-Württemb	erg		
arbe	-	braun	- *
rockenrückstand (105 °C)	% OS	91,4	DIN EN 14346 2007-03
odenart	-	Lehm Schluff	Bodenkundliche Kartieranleitg. 1994
ohlenwasserstoffe, C10-C40	mg/kg TS	< 50	DIN EN 14039 2005-01
ohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01
OX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01
önigswasseraufschluss	-	x	DIN EN 13657 2003-01
rsen	mg/kg TS	16,7	DIN EN ISO 17294-2 2005-02
lei	mg/kg TS	35,6	DIN EN ISO 17294-2 2005-02
admium	mg/kg TS	0,22	DIN EN ISO 17294-2 2005-02
hrom, gesamt	mg/kg TS	28,2	DIN EN ISO 17294-2 2005-02
upfer	mg/kg TS	21,9	DIN EN ISO 17294-2 2005-02
ickel	mg/kg TS	25,2	DIN EN ISO 17294-2 2005-02
uecksilber	mg/kg TS	0,05	DIN EN ISO 12846 2012-08
hallium	mg/kg TS	< 0,40	DIN EN ISO 17294-2 2005-02
nk	mg/kg TS	96,9	DIN EN ISO 17294-2 2005-02
yanid, gesamt	mg/kg TS	< 0,5	DIN EN ISO 14403 (D 6) 2002-07

PAK (EPA)			
Naphthalin	mg/kg TS	0,52	DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	0,41	DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	0,78	DIN ISO 18287 2006-05
Fluoren	mg/kg TS	3,32	DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	15,8	DIN ISO 18287 2006-05
Anthracen	mg/kg TS	4,68	DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	21,0	DIN ISO 18287 2006-05
Pyren	mg/kg TS	15,1	DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	10,0	DIN ISO 18287 2006-05
Chrysen	mg/kg TS	8,30	DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	16,2	DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	9,80	DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	5,97	DIN ISO 18287 2006-05
Indeno(1,2,3-cd)pyren	mg/kg TS	2,62	DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	0,89	DIN ISO 18287 2006-05
Benzo(ghi)perylen	mg/kg TS	2,65	DIN ISO 18287 2006-05
Summe	mg/kg TS	118	berechnet
Cumino	mg/kg 10	110	20.000.
BTEX-Aromaten			
Benzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Toluol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Ethylbenzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
m/p-Xylol	mg/kg TS	< 0,1	DIN 38407-F9 (F 9) 1991-05
o-Xylol	mg/kg TS	< 0.05	DIN 38407-F9 (F 9) 1991-05
Summe	mg/kg TS	n.b.	berechnet
Cultillic	mg/kg 10	11.5.	bolodina
LHKW			
	man/len TC	< 0.04	DIN EN ICO 40204 (E 4) 4007 00
cis-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
trans-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlormethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlormethan (Tetra)	mg/kg TS	< 0.01	DIN EN ISO 10301 (F 4) 1997-08
1,1,1-Trichlorethan	mg/kg TS	< 0.01	DIN EN ISO 10301 (F 4) 1997-08
Trichlorethen (Tri)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlorethen (Per)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Summe	mg/kg TS	n.b.	berechnet
PCB 7 gemäß DepV Anh. 4			
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101			DIN EN 15308 2008-05
PCB 101 PCB 118	mg/kg TS	< 0.02	
	mg/kg TS	< 0.02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0.02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet

-	X	DIN EN 12457-4 2003-01
-	farblos	-*
-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
-	8,70	DIN 38404-5 (C 5) 2009-07
μS/cm	157	DIN EN 27888 (C8) 1993-11
mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
mg/L	< 10,0	DIN EN ISO 10304-1 (D 20) 2009-07
μg/L	< 5,00	DIN EN ISO 14403 (D 6) 2002-07
μg/L	< 10,0	DIN EN ISO 14402 (H 37) 1999-12
μg/L	3,2	DIN EN ISO 17294-2 (E 29) 2005-02
μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
μg/L	< 2	DIN EN ISO 17294-2 (E 29) 2005-02
μg/L	3,2	DIN EN ISO 17294-2 (E 29) 2005-02
μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
μg/L	< 0,200	DIN EN ISO 12846 2012-08
μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02
	mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µ	- farblos - ohne - 8,70 μS/cm 157 mg/L < 5,00 mg/L < 10,0 μg/L < 5,00 μg/L < 10,0 μg/L < 3,2 μg/L < 2,0 μg/L < 1,0 μg/L < 3,2 μg/L < 2,0 μg/L < 2,0 μg/L < 2,0 μg/L < 3,2 μg/L < 3,2 μg/L < 0,200

Auffüllbereich 2			Во
102414/930/02		Grenz-/ A	nforderungswert
Parameter	Einheit	Ergebnis	Methode
VwV Boden Baden-Württemb	erg		
arbe	-	braun	- *
Гrockenrückstand (105 °С)	% OS	87,0	DIN EN 14346 2007-03
Bodenart	-	Lehm Schluff	Bodenkundliche Kartieranleitg. 1994
Kohlenwasserstoffe, C10-C40	mg/kg TS	90	DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01
Königswasseraufschluss	-	x	DIN EN 13657 2003-01
Arsen	mg/kg TS	20,8	DIN EN ISO 17294-2 2005-02
Blei	mg/kg TS	59,5	DIN EN ISO 17294-2 2005-02
Cadmium	mg/kg TS	0,50	DIN EN ISO 17294-2 2005-02
Chrom, gesamt	mg/kg TS	40,4	DIN EN ISO 17294-2 2005-02
Kupfer	mg/kg TS	33,4	DIN EN ISO 17294-2 2005-02
lickel	mg/kg TS	36,9	DIN EN ISO 17294-2 2005-02
Quecksilber 	mg/kg TS	0,10	DIN EN ISO 12846 2012-08
Thallium	mg/kg TS	< 0,40	DIN EN ISO 17294-2 2005-02
Zink	mg/kg TS	168	DIN EN ISO 17294-2 2005-02
Cyanid, gesamt	mg/kg TS	< 0,5	DIN EN ISO 14403 (D 6) 2002-07
PAK (EPA)			
laphthalin	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	0,37	DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	0,40	DIN ISO 18287 2006-05
Fluoren	mg/kg TS	1,46	DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	9,57	DIN ISO 18287 2006-05
Anthracen	mg/kg TS	3,80	DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	21,0	DIN ISO 18287 2006-05
Pyren	mg/kg TS	15,5	DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	10,9	DIN ISO 18287 2006-05
Chrysen	mg/kg TS	8,91	DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	18,7	DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	11,2	DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	6,80	DIN ISO 18287 2006-05
ndeno(1,2,3-cd)pyren	mg/kg TS	2,82	DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	0,90	DIN ISO 18287 2006-05
Benzo(ghi)perylen Bumme	mg/kg TS	3,06 115	DIN ISO 18287 2006-05
purinitie	mg/kg TS	115	berechnet
BTEX-Aromaten			
Benzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Toluol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Ethylbenzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
n/p-Xylol	mg/kg TS	< 0,1	DIN 38407-F9 (F 9) 1991-05
o-Xylol Summe	mg/kg TS mg/kg TS	< 0,05 n.b.	DIN 38407-F9 (F 9) 1991-05 berechnet
	gg 10		
LHKW	malle: TO	~ 0.04	DIN EN 100 40004 /E 4) 4007 00
is-1,2-Dichlorethen	mg/kg TS	< 0.01	DIN EN ISO 10301 (F 4) 1997-08
rans-1,2-Dichlorethen	mg/kg TS	< 0.01	DIN EN ISO 10301 (F 4) 1997-08
richlormethan	mg/kg TS	< 0.01	DIN EN ISO 10301 (F 4) 1997-08
etrachlormethan (Tetra)	mg/kg TS	< 0.01	DIN EN ISO 10301 (F 4) 1997-08
,1,1-Trichlorethan	mg/kg TS mg/kg TS	< 0,01 < 0,01	DIN EN ISO 10301 (F 4) 1997-08
richlorethen (Tri)	mg/kg TS	0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlorethen (Per)	maiva i c		DIN EN ISO 10301 (F 4) 1997-08

PCB 7 gemäß DepV Anh. 4			
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 118	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet
Eluatherstellung	-	x	DIN EN 12457-4 2003-01
Farbe, qualitativ	-	farblos	-*
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
pH-Wert / bei 20°C	-	8,30	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	565	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	59,4	DIN EN ISO 10304-1 (D 20) 2009-07
Cyanid, gesamt	μg/L	< 5,00	DIN EN ISO 14403 (D 6) 2002-07
Phenolindex	μg/L	< 10,0	DIN EN ISO 14402 (H 37) 1999-12
Arsen	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	2,6	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	2,7	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02

Auffüllbereich 3				В
102414/930/03			Grenz-/ Anforderungswert	
Parameter	Einheit	Ergebnis	Methode	
VwV Boden Baden-Württemb	erg			
- arbe	-	braun	-*	
Trockenrückstand (105 °C)	% OS	87,5	DIN EN 14346 2007-03	
Bodenart	-	Lehm Schluff	Bodenkundliche Kartieranleitg. 199	94
Kohlenwasserstoffe, C10-C40	mg/kg TS	55	DIN EN 14039 2005-01	
Cohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01	
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01	
Königswasseraufschluss	-	x	DIN EN 13657 2003-01	
Arsen	mg/kg TS	16,9	DIN EN ISO 17294-2 2005-02	
Blei	mg/kg TS	60,1	DIN EN ISO 17294-2 2005-02	
Cadmium	mg/kg TS	0,21	DIN EN ISO 17294-2 2005-02	
Chrom, gesamt	mg/kg TS	38,0	DIN EN ISO 17294-2 2005-02	
Kupfer	mg/kg TS	25,3	DIN EN ISO 17294-2 2005-02	
Nickel	mg/kg TS	38,5	DIN EN ISO 17294-2 2005-02	
Quecksilber	mg/kg TS	0,05	DIN EN ISO 12846 2012-08	
Гhallium	mg/kg TS	< 0,40	DIN EN ISO 17294-2 2005-02	
Zink	mg/kg TS	92,5	DIN EN ISO 17294-2 2005-02	
Cyanid, gesamt	mg/kg TS	< 0,5	DIN EN ISO 14403 (D 6) 2002-07	
PAK (EPA)				
Naphthalin	mg/kg TS	0,44	DIN ISO 18287 2006-05	
Acenaphthylen	mg/kg TS	0,45	DIN ISO 18287 2006-05	
Acenaphthen	mg/kg TS	1,64	DIN ISO 18287 2006-05	
luoren	mg/kg TS	6,39	DIN ISO 18287 2006-05	
Phenanthren	mg/kg TS	29,0	DIN ISO 18287 2006-05	
Anthracen	mg/kg TS	9,20	DIN ISO 18287 2006-05	
Fluoranthen	mg/kg TS	40,5	DIN ISO 18287 2006-05	
Pyren	mg/kg TS	28,9	DIN ISO 18287 2006-05	
Benz(a)anthracen	mg/kg TS	20,3	DIN ISO 18287 2006-05	
Chrysen	mg/kg TS	14,5	DIN ISO 18287 2006-05	
Benzo(b)fluoranthen	mg/kg TS	29,2	DIN ISO 18287 2006-05	
Benzo(k)fluoranthen	mg/kg TS	17,5	DIN ISO 18287 2006-05	
Benzo(a)pyren	mg/kg TS	10,5	DIN ISO 18287 2006-05	
ndeno(1,2,3-cd)pyren	mg/kg TS	4,74	DIN ISO 18287 2006-05	
Dibenz(a,h)anthracen	mg/kg TS	1,63	DIN ISO 18287 2006-05	
Benzo(ghi)perylen	mg/kg TS	4,44	DIN ISO 18287 2006-05	
Summe	mg/kg TS	219	berechnet	
BTEX-Aromaten				
Benzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05	
- oluol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05	
Ethylbenzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05	
n/p-Xylol	mg/kg TS	< 0,1	DIN 38407-F9 (F 9) 1991-05	
p-Xylol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05	
Summe	mg/kg TS	n.b.	berechnet	

LHKW			
cis-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
rans-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlormethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlormethan (Tetra)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
1,1,1-Trichlorethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlorethen (Tri)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlorethen (Per)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Summe	mg/kg TS	n.b.	berechnet
PCB 7 gemäß DepV Anh. 4			
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 118	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet
Eluatherstellung	-	х	DIN EN 12457-4 2003-01
⁼ arbe, qualitativ	-	farblos	- *
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
oH-Wert / bei 20°C	-	10,2	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	163	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	11,5	DIN EN ISO 10304-1 (D 20) 2009-07
Cyanid, gesamt	μg/L	< 5,00	DIN EN ISO 14403 (D 6) 2002-07
Phenolindex	μg/L	20,0	DIN EN ISO 14402 (H 37) 1999-12
Arsen	μg/L	6,0	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	< 2	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	7,4	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02

Auffüllbereich 4			
102414/930/04			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
VwV Boden Baden-Württemb	erg		
arbe	-	braun	-*
Trockenrückstand (105 °C)	% OS	93,8	DIN EN 14346 2007-03
Bodenart	-	Lehm Schluff	Bodenkundliche Kartieranleitg. 1994
Kohlenwasserstoffe, C10-C40	mg/kg TS	< 50	DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01
Königswasseraufschluss	-	x	DIN EN 13657 2003-01
Arsen	mg/kg TS	9,4	DIN EN ISO 17294-2 2005-02
3lei	mg/kg TS	17,8	DIN EN ISO 17294-2 2005-02
Cadmium	mg/kg TS	0,26	DIN EN ISO 17294-2 2005-02
Chrom, gesamt	mg/kg TS	25,0	DIN EN ISO 17294-2 2005-02
Kupfer	mg/kg TS	20,5	DIN EN ISO 17294-2 2005-02
Nickel	mg/kg TS	22,8	DIN EN ISO 17294-2 2005-02
Quecksilber	mg/kg TS	< 0,05	DIN EN ISO 12846 2012-08
Гhallium	mg/kg TS	< 0,40	DIN EN ISO 17294-2 2005-02
Zink	mg/kg TS	143	DIN EN ISO 17294-2 2005-02
Cyanid, gesamt	mg/kg TS	< 0,5	DIN EN ISO 14403 (D 6) 2002-07
PAK (EPA)			
Naphthalin	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	0,17	DIN ISO 18287 2006-05
Fluoren	mg/kg TS	0,62	DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	2,21	DIN ISO 18287 2006-05
Anthracen	mg/kg TS	0,87	DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	1,99	DIN ISO 18287 2006-05
Pyren	mg/kg TS	1,34	DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	0,82	DIN ISO 18287 2006-05
Chrysen	mg/kg TS	0,77	DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	1,37	DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	0,82	DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	0,51	DIN ISO 18287 2006-05
ndeno(1,2,3-cd)pyren	mg/kg TS	0,25	DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	0,07	DIN ISO 18287 2006-05
Benzo(ghi)perylen	mg/kg TS	0,28	DIN ISO 18287 2006-05
Summe	mg/kg TS	12,1	berechnet
BTEX-Aromaten			
Benzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Foluol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Ethylbenzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
m/p-Xylol	mg/kg TS	< 0,1	DIN 38407-F9 (F 9) 1991-05
o-Xylol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Summe	mg/kg TS	n.b.	berechnet

LHKW			
cis-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
rans-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlormethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlormethan (Tetra)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
1,1,1-Trichlorethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlorethen (Tri)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlorethen (Per)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Summe	mg/kg TS	n.b.	berechnet
PCB 7 gemäß DepV Anh. 4			
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 118	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet
Eluatherstellung	-	X	DIN EN 12457-4 2003-01
arbe, qualitativ	-	farblos	- *
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
oH-Wert / bei 20°C	-	8,81	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	133	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	< 10,0	DIN EN ISO 10304-1 (D 20) 2009-07
Cyanid, gesamt	μg/L	< 5,00	DIN EN ISO 14403 (D 6) 2002-07
Phenolindex	μg/L	< 10,0	DIN EN ISO 14402 (H 37) 1999-12
Arsen	μg/L	2,2	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02

Auffüllbereich 5			В
102414/930/05			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
VwV Boden Baden-Württemb	erg		
arbe	-	braun	.*
rockenrückstand (105 °C)	% OS	90,8	DIN EN 14346 2007-03
odenart	-	Lehm Schluff	Bodenkundliche Kartieranleitg. 1994
ohlenwasserstoffe, C10-C40	mg/kg TS	< 50	DIN EN 14039 2005-01
ohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01
OX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01
önigswasseraufschluss	-	×	DIN EN 13657 2003-01
rsen	mg/kg TS	23,5	DIN EN ISO 17294-2 2005-02
lei	mg/kg TS	23,4	DIN EN ISO 17294-2 2005-02
admium	mg/kg TS	< 0,20	DIN EN ISO 17294-2 2005-02
hrom, gesamt	mg/kg TS	36,6	DIN EN ISO 17294-2 2005-02
upfer	mg/kg TS	24,7	DIN EN ISO 17294-2 2005-02
ickel	mg/kg TS	42,3	DIN EN ISO 17294-2 2005-02
uecksilber	mg/kg TS	< 0,05	DIN EN ISO 12846 2012-08
hallium	mg/kg TS	< 0,40	DIN EN ISO 17294-2 2005-02
nk	mg/kg TS	143	DIN EN ISO 17294-2 2005-02
yanid, gesamt	mg/kg TS	< 0,5	DIN EN ISO 14403 (D 6) 2002-07
PAK (EPA)			
aphthalin	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
cenaphthylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
cenaphthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
luoren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
henanthren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
nthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
uoranthen	mg/kg TS	0,09	DIN ISO 18287 2006-05
yren	mg/kg TS	0,07	DIN ISO 18287 2006-05
enz(a)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
hrysen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
enzo(b)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
enzo(k)fluoranthen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
enzo(a)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
deno(1,2,3-cd)pyren	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
ibenz(a,h)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
enzo(ghi)perylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
umme	mg/kg TS	0,16	berechnet
BTEX-Aromaten			
enzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
oluol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
thylbenzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
/p-Xylol	mg/kg TS	< 0,1	DIN 38407-F9 (F 9) 1991-05
-Xylol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
umme	mg/kg TS	n.b.	berechnet

LHKW

LITINA			
cis-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
trans-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlormethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlormethan (Tetra)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
1,1,1-Trichlorethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlorethen (Tri)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlorethen (Per)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Summe	mg/kg TS	n.b.	berechnet
PCB 7 gemäß DepV Anh. 4			
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 118	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet
Eluatherstellung	-	x	DIN EN 12457-4 2003-01
Farbe, qualitativ	-	farblos	-*
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
pH-Wert / bei 20°C	-	8,46	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	132	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	< 10,0	DIN EN ISO 10304-1 (D 20) 2009-07
Cyanid, gesamt	μg/L	< 5,00	DIN EN ISO 14403 (D 6) 2002-07
Phenolindex	μg/L	< 10,0	DIN EN ISO 14402 (H 37) 1999-12
Arsen	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	3,1	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02

Chemnitz, den 02.05.2019

Mario Thielemann Laborleiter

Legende: n.n. nicht nachweisbar (M) Mittelwert n.b. nicht bestimmbar (Zahl) Einzelwert

n.d. nicht durchgeführt x Untersuchung durchgeführt

< x,x kleiner als Bestimmungsgrenze

Fett gedruckte Prüfverfahren überschreiten (bzw. unterschreiten) die zulässigen Grenz- oder Anforderungswerte!

mit * markierte Prüfverfahren sind nicht akkreditiert

mit 1 markierte Prüfverfahren wurden am Standort Tübingen bearbeitet

mit + markierte Prüfverfahren wurden im Unterauftrag bearbeitet, der Auftragnehmer ist für das Verfahren akkreditiert

00103125-01_(AC)

11.06.2019

Berghof Analytik + Umweltengineering GmbH Dresdner Straße 181a • D-09131 Chemnitz

Berghof Analytik + Umweltengineering GmbH Herr Bernhard Hauser

Ob dem Himmelreich 9

72074 Tübingen

Auftragsdaten	
Betreff:	Projekt: Hindenburgstraße 75, Balingen (930-1545)
Eingangsdatum:	27.05.2019
Bearbeitungszeitraum:	27.05.2019 - 07.06.2019
Probennehmer:	Auftraggeber

Auffüllbereich 6			Boder
103125/930/01			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode

VwV Boden Baden-Württemb	erg		
Farbe	-	braun	_+
Trockenrückstand (105 °C)	% OS	85,5	DIN EN 14346 2007-03
Bodenart	-	Sand	Bodenkundliche Kartieranleitg. 1994
Kohlenwasserstoffe, C10-C40	mg/kg TS	< 50	DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01
Königswasseraufschluss	-	x	DIN EN 13657 2003-01
Arsen	mg/kg TS	10,5	DIN EN ISO 17294-2 2005-02
3lei	mg/kg TS	40,6	DIN EN ISO 17294-2 2005-02
Cadmium	mg/kg TS	0,29	DIN EN ISO 17294-2 2005-02
Chrom, gesamt	mg/kg TS	25,1	DIN EN ISO 17294-2 2005-02
Kupfer	mg/kg TS	28,1	DIN EN ISO 17294-2 2005-02
Nickel	mg/kg TS	27,1	DIN EN ISO 17294-2 2005-02
Quecksilber	mg/kg TS	< 0,05	DIN EN ISO 12846 2012-08
Thallium	mg/kg TS	< 0,40	DIN EN ISO 17294-2 2005-02
Zink	mg/kg TS	108	DIN EN ISO 17294-2 2005-02
Cyanid, gesamt	mg/kg TS	< 0,5	DIN EN ISO 14403 (D 6) 2002-07

DAI/ (EDA)			
PAK (EPA)			
Naphthalin	mg/kg TS	0,05	DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	0,08	DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	0,57	DIN ISO 18287 2006-05
Fluoren	mg/kg TS	0,52	DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	4,15	DIN ISO 18287 2006-05
Anthracen	mg/kg TS	0,88	DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	5,39	DIN ISO 18287 2006-05
Pyren	mg/kg TS	4,19	DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	1,92	DIN ISO 18287 2006-05
Chrysen	mg/kg TS	1,69	DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	2,10	DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	0,72	DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	1,38	DIN ISO 18287 2006-05
Indeno(1,2,3-cd)pyren	mg/kg TS	0,71	DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	0,20	DIN ISO 18287 2006-05
Benzo(ghi)perylen	mg/kg TS	0,74	DIN ISO 18287 2006-05
Summe	mg/kg TS	25,3	berechnet
BTEX-Aromaten			
Benzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Toluol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Ethylbenzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
m/p-Xylol	mg/kg TS	< 0,1	DIN 38407-F9 (F 9) 1991-05
o-Xylol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Summe	mg/kg TS	n.b.	berechnet
LHKW			
	man/len TC	< 0.01	DIN EN ICO 40204 (E 4) 4007 00
cis-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
trans-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlormethan	mg/kg TS	0,02	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlormethan (Tetra)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
1,1,1-Trichlorethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlorethen (Tri)	mg/kg TS	0,13	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlorethen (Per)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Summe	mg/kg TS	0,15	berechnet
PCB 7 gemäß DepV Anh. 4			
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 118	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 118	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153			DIN EN 15308 2008-05
PCB 153 PCB 180	mg/kg TS mg/kg TS	< 0,02	
	0 0	< 0,02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet

Eluatherstellung	-	X	DIN EN 12457-4 2003-01
Farbe, qualitativ	-	farblos	-*
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
pH-Wert / bei 20°C	-	8,05	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	1363	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	769	DIN EN ISO 10304-1 (D 20) 2009-07
Cyanid, gesamt	μg/L	< 5,00	DIN EN ISO 14403 (D 6) 2002-07
Phenolindex	μg/L	< 10,0	DIN EN ISO 14402 (H 37) 1999-12
Arsen	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 12846 2012-08
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02

Auffüllbereich 7			Boden
103125/930/02			Grenz-/ Anforderungswert
Parameter	Einheit	Ergebnis	Methode
VwV Boden Baden-Württemb	perg		
Farbe	-	braun	-*
Trockenrückstand (105 °C)	% OS	89,3	DIN EN 14346 2007-03
Bodenart	-	Sand	Bodenkundliche Kartieranleitg. 1994
Kohlenwasserstoffe, C10-C40	mg/kg TS	< 50	DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01
EOX (extr.organ.geb.Halog.)	mg/kg TS	< 1	DIN 38414-17 (S 17) 2017-01
Königswasseraufschluss	-	x	DIN EN 13657 2003-01
Arsen	mg/kg TS	23,0	DIN EN ISO 17294-2 2005-02
Blei	mg/kg TS	21,5	DIN EN ISO 17294-2 2005-02
Cadmium	mg/kg TS	1,16	DIN EN ISO 17294-2 2005-02
Chrom, gesamt	mg/kg TS	42,1	DIN EN ISO 17294-2 2005-02
Kupfer	mg/kg TS	40,1	DIN EN ISO 17294-2 2005-02
Nickel	mg/kg TS	31,1	DIN EN ISO 17294-2 2005-02
Quecksilber	mg/kg TS	< 0,05	DIN EN ISO 12846 2012-08
Thallium	mg/kg TS	< 0,40	DIN EN ISO 17294-2 2005-02
Zink	mg/kg TS	139	DIN EN ISO 17294-2 2005-02
Cyanid, gesamt	mg/kg TS	< 0,5	DIN EN ISO 14403 (D 6) 2002-07
PAK (EPA)			
Naphthalin	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthylen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Acenaphthen	mg/kg TS	0,19	DIN ISO 18287 2006-05
Fluoren	mg/kg TS	0,20	DIN ISO 18287 2006-05
Phenanthren	mg/kg TS	2,03	DIN ISO 18287 2006-05
Anthracen	mg/kg TS	0,47	DIN ISO 18287 2006-05
Fluoranthen	mg/kg TS	2,56	DIN ISO 18287 2006-05
Pyren	mg/kg TS	1,95	DIN ISO 18287 2006-05
Benz(a)anthracen	mg/kg TS	0,66	DIN ISO 18287 2006-05
Chrysen	mg/kg TS	0,59	DIN ISO 18287 2006-05
Benzo(b)fluoranthen	mg/kg TS	0,60	DIN ISO 18287 2006-05
Benzo(k)fluoranthen	mg/kg TS	0,23	DIN ISO 18287 2006-05
Benzo(a)pyren	mg/kg TS	0,38	DIN ISO 18287 2006-05
Indeno(1,2,3-cd)pyren	mg/kg TS	0,18	DIN ISO 18287 2006-05
Dibenz(a,h)anthracen	mg/kg TS	< 0,05	DIN ISO 18287 2006-05
Benzo(ghi)perylen	mg/kg TS	0,21	DIN ISO 18287 2006-05
Summe	mg/kg TS	10,3	berechnet
BTEX-Aromaten			
Benzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Toluol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Ethylbenzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
m/p-Xylol	mg/kg TS	< 0,1	DIN 38407-F9 (F 9) 1991-05
o-Xylol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Summe	mg/kg TS	n.b.	berechnet
LHKW			
cis-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
trans-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlormethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlormethan (Tetra)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
1,1,1-Trichlorethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlorethen (Tri)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlorethen (Per)	mg/kg TS	0,05	DIN EN ISO 10301 (F 4) 1997-08
Summe	mg/kg TS	0,05	berechnet

Summe

PCB 7 gemäß DepV Anh. 4			
PCB 28	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 52	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 101	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 118	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 138	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 153	mg/kg TS	< 0,02	DIN EN 15308 2008-05
PCB 180	mg/kg TS	< 0.02	DIN EN 15308 2008-05
Summe	mg/kg TS	n.b.	berechnet
Eluatherstellung	-	X	DIN EN 12457-4 2003-01
Farbe, qualitativ	-	farblos	_*
Geruch, qualitativ	-	ohne	DIN EN 1622 (B 3) Anh. C 2006-10
pH-Wert / bei 20°C	-	8,61	DIN 38404-5 (C 5) 2009-07
elektr. Leitfähigkeit bei 25°C	μS/cm	359	DIN EN 27888 (C8) 1993-11
Chlorid	mg/L	< 5,00	DIN EN ISO 10304-1 (D 20) 2009-07
Sulfat	mg/L	116	DIN EN ISO 10304-1 (D 20) 2009-07
Cyanid, gesamt	μg/L	< 5,00	DIN EN ISO 14403 (D 6) 2002-07
Phenolindex	μg/L	< 10,0	DIN EN ISO 14402 (H 37) 1999-12
Arsen	μg/L	< 2.0	DIN EN ISO 17294-2 (E 29) 2005-02
Blei	μg/L	< 2,0	DIN EN ISO 17294-2 (E 29) 2005-02
Cadmium	μg/L	< 1,0	DIN EN ISO 17294-2 (E 29) 2005-02
Chrom, gesamt	μg/L	2,4	DIN EN ISO 17294-2 (E 29) 2005-02
Kupfer	μg/L	< 2.0	DIN EN ISO 17294-2 (E 29) 2005-02
Nickel	μg/L	< 2.0	DIN EN ISO 17294-2 (E 29) 2005-02
Quecksilber	μg/L	< 0,200	DIN EN ISO 17294-2 (E 29) 2003-02
Zink	μg/L	< 10	DIN EN ISO 17294-2 (E 29) 2005-02
103125/930/03			Grenz-/ Anforderungswert
Parameter	Einheit	Evenhaio	Methode
raiailletei	Emment	Ergebnis	Wethode
Trockenrückstand (105 °C)	% OS	77,1	DIN EN 14346 2007-03
Kohlenwasserstoffe, C10-C40	mg/kg TS	< 50	DIN EN 14039 2005-01
Kohlenwasserstoffe, C10-C22	mg/kg TS	< 50	DIN EN 14039 2005-01
BTEX-Aromaten			
Benzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Toluol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Ethylbenzol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
m/p-Xylol	mg/kg TS	< 0,1	DIN 38407-F9 (F 9) 1991-05
o-Xylol	mg/kg TS	< 0,05	DIN 38407-F9 (F 9) 1991-05
Summe	mg/kg TS	n.b.	berechnet
LHKW einschließlich Vinylch			
Chlorethen (Vinylchlorid)	mg/kg TS	< 0,05	DIN EN ISO 10301 (F 4) 1997-08
cis-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
trans-1,2-Dichlorethen	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlormethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Tetrachlormethan (Tetra)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
1,1,1-Trichlorethan	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Totals Is no 415 and (Tot)			
Trichlorethen (Tri)	mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08
Trichlorethen (Tri) Tetrachlorethen (Per)	mg/kg TS mg/kg TS	< 0,01	DIN EN ISO 10301 (F 4) 1997-08 DIN EN ISO 10301 (F 4) 1997-08

0,06

berechnet

mg/kg TS

Chemnitz, den 11.06.2019

i.V.

Mario Thielemann Laborleiter

Legende: n.n. nicht nachweisbar

(M) Mittelwert (Zahl) Einzelwert

n.b. nicht bestimmbarn.d. nicht durchgeführt

Untersuchung durchgeführt

< x,x kleiner als Bestimmungsgrenze

Fett gedruckte Prüfverfahren überschreiten (bzw. unterschreiten) die zulässigen Grenz- oder Anforderungswerte!

mit * markierte Prüfverfahren sind nicht akkreditiert

mit 1 markierte Prüfverfahren wurden am Standort Tübingen bearbeitet

mit + markierte Prüfverfahren wurden im Unterauftrag bearbeitet, der Auftragnehmer ist für das Verfahren akkreditiert